Adsorption removal of colistin from aqueous solution using NaOH-modified granular activated carbon
DOI:
https://doi.org/10.60136/bas.v13.2024.2980Keywords:
adsorption, colistin, activated carbonAbstract
Nowadays, antibiotic contamination in water sources is increasingly being detected, contributing to the rise of the causes of drug resistance. Colistin is a last-resort antibiotic used to treat infections that are resistant to other antibiotics in both humans and animals. However, it is not completely adsorbed by both human and animal bodies, leading to its excretion and subsequent environmental contamination. This research studies the use of sodium hydroxide modified granular activated carbon (m-GAC), prepared by a simple and low temperature activation process for the adsorption of colistin in water. Batch adsorption experiment was investigated at a colistin concentration of 250 mg/L. The maximum adsorption capacity of the m-GAC was significantly higher (83.9 mg/g) than the unmodified activated carbon (GAC, 31 mg/g). The adsorption behavior matched well with the Freundlich isotherm, and the pseudo-second-order kinetic model. Additionally, the m-GAC exhibited a higher rate of colistin absorption compared to GAC. The predominant adsorption mechanisms are likely a strong physical adsorption, including electrostatic attraction and hydrogen bonding. The increase in oxygen-containing groups on the surface of m-GAC enhances its adsorption efficiency. This study offers foundational insights for improving the adsorption efficiency of activated carbon on a scalable production level for colistin removal application in water and further aiding in the control of colistin resistance-spread among microorganisms.
References
Chiemchaisri W, Chiemchaisri C, Hamjinda NS, Jeensalute C, Buranapakdee P, Thamlikitkul V. Field investigation of antibiotic removal efficacies in different hospital wastewater treatment processes in Thailand. Emerging Contam. 2022;8:329-39. doi: 10.1016/j.emcon.2022.07.002.
Bhandari G, Chaudhary P, Gangola S, Gupta S, Gupta A, Rafatullah M, et al. A review on hospital wastewater treatment technologies: current management practices and future prospects. JWPE. 2023;56:104516. doi: 10.1016/j.jwpe.2023.104516.
Verlicchi P, Al Aukidya M, Zambelloa E. What have we learned from worldwide experiences on the management and treatment of hospital effluent? — an overview and a discussion on perspectives. Sci Total Environ. 2015;514:467-91. doi: 10.1016/j.scitotenv.2015.02.020.
Xiang Y, Xu Z, Wei Y, Zhou Y, Yang X, Yang Y, et al. Carbon-based materials as adsorbent for antibiotics removal: mechanisms and influencing factors. JEM. 2019;237:128-38. doi: 10.1016/j.jenvman.2019.02.068.
Yu F, Li Y, Han S, Ma J. Adsorptive removal of antibiotics from aqueous solution using carbon materials. Chemosphere. 2016;153:365-85. doi: 10.1016/j.chemosphere.2016.03.083.
Ahmed MB, Zhou JL, Ngo HH, Guo W. Adsorptive removal of antibiotics from water and wastewater: progress and challenges. Sci Total Environ. 2015;532:112-26. doi: 10.1016/j.scitotenv.2015.05.130.
Sharma E, Chen Y, Kelso C, Sivakumar M, Jiamg G. Navigating the environmental impacts and analytical methods of last-resort antibiotics: colistin and carbapenems. SEH. 2024;2(1):100058. doi: 10.1016/j.seh.2024.100058.
Peng L, Peng C, Fu S, Qiu Y. Adsorption-desorption and degradation of colistin in soils under aerobic conditions. Ecotoxicol Environ Saf. 2022;243:113989. doi: 10.1016/j.ecoenv.2022.113989.
ศูนย์วิชาการเฝ้าระวังและพัฒนาระบบยา (กพย.). สยองสูตรอาหารฟาร์มหมูให้กิน "โคลิสติน" ตัวแพร่ยีนดื้อยา [อินเทอร์เน็ต]. 2560 [เข้าถึงเมื่อ 15 พฤษภาคม 2567]. เข้าถึงได้จาก: https://www.thaidrugwatch.org/news_detail.php?n_no=1373
Bajda T, Grela A, Pamuła J, Kuc J, Klimek A, Matusik J, et al. Using zeolite materials to remove pharmaceuticals from water. Materials. 2024;17(15):3848. doi: 10.3390/ma17153848.
Wang L, Lv S, Wang X, Liu B, Wang Z. Ferrate (VI) oxidation is an effective and safe way to degrade residual colistin-a last resort antibiotic-in wastewater. Front Vet Sci. 2021;8:773089. doi:10.3389/fvets.2021.773089.
Yin F, Wang D, Li Z, Ohlsen T, Hartwig P, Czekalla S. Study on anaerobic digestion treatment of hazardous colistin sulphate contained pharmaceutical sludge. Bioresource Technol. 2015;177:188-93. doi: 10.1016/j.biortech.2014.11.091.
Dehkordi SSR, Delavar Q, Ebrahim HA, Partash SS. CO2 adsorption by coal-based activated carbon modified with sodium hydroxide. Mater Today Commun. 2022;33:104776. doi: 10.1016/j.mtcomm.2022.104776.
Ntakirutimana S, Tan W, Wang T. Enhanced surface activity of activated carbon by surfactants synergism. RSC Adv. 2019;9:26519-31. doi: 10.1039/c9ra04521j.
Hafizuddin MS, Lee CL, Chin KL, H’ng PS, Khoo PS, Rashid U. Fabrication of highly microporous structure activated carbon via surface modification with sodium hydroxide. Polymers. 2021;13(22):3954. doi: 10.3390/polym13223954.
Kristianto H, Arie AA, Susanti RF, Halim M, Lee JK. The effect of activated carbon support surface modification on characteristics of carbon nanospheres prepared by deposition precipitation of Fe-catalyst. IOP Conf Ser: Mater Sci Eng. 2017;162:012034. doi: 10.1088/1757-899X/162/1/012034.
ดรุณี สุขชิต, ปนัดดา ศรีแก้ว, จุฑามาศ นาทองห่อ, สายสมร ลำลอง, มาลี ประจวบสุข, สมจินตนา ทวีพานิชย์ และคณะ. การดูดซับสีย้อมบริลเลียน กรีน ด้วยซีโอไลต์ เอ ที่เตรียมจากเถ้าชานอ้อย. ใน: การประชุมวิชาการระดับชาติ มอบ. วิจัย ครั้งที่ 16; วันที่ 11-12 ก.ค. 2565; อุบลราชธานี. [อุบลราชธานี]: มหาวิทยาลัยอุบลราชธานี; 2565. น. 185-94.
วรวิทย์ จันทร์สุวรรณ, สิริรัตน์ พานิช. การกำจัดโลหะหนักจากสารละลายโดยตัวดูดซับจากวัสดุชีวภาพ [รายงานวิจัย]. กรุงเทพ: มหาวิทยาลัยเทคโนโลยีราชมงคลพระนคร; 2563.
Drider D, Boukherroub R, Devendec LL, Belguesmia Y, Hazime N, Mourand G, et al. Impact of colistin and colistin-loaded on alginate nanoparticles on pigs infected with a colistin-resistant enterotoxigenic Escherichia coli strain. Vet Microbiol. 2022;266:109359. doi: 10.1016/j.vetmic.2022.109359.
Ma Z, Wang J, Nation LR, Li J, Turnidge JD, Coulthard K, et al. Renal disposition of colistin in the isolated perfused rat kidney. Antimicrob Agents Chemother. 2009;53(7):2857-64. doi: 10.1128/AAC.00030-09.
Dutta J, Mala AA. Removal of antibiotic from the water environment by the adsorption technologies: a review. Water Sci Technol. 2020;82(3):401-26. doi: 10.2166/wst.2020.335.
Cruz AC, Rivas-Sanchez A, Gallareta-Olivares G, González-González RB, Cárdenas-Alcaide MF, Iqbal HMN, et al. Carbon-based materials: adsorptive removal of antibiotics from water. Water Emerging Contam Nanoplast. 2023;2(2):1-17. doi: 10.20517/wecn.2022.19.
Davis CA, Janssen E. M-L. Environmental fate processes of antimicrobial peptides daptomycin, bacitracins, and polymyxins. Environ Int. 2020;134:105271. doi: 10.1016/j.envint.2019.105271.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Bulletin of Applied Sciences

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.