A Prototype of Using Convolutional Neural Network for Concrete Crack Detection.
Keywords:
machine learning, concrete crack detection, convolutional neural networkAbstract
This research aims to develop a model for using artificial intelligence using convolutional neural networks (CNN) to automatically detect concrete cracks in construction work, reducing the need for manual inspection. A diverse dataset comprising various concrete crack scenarios is employed to train and test, ensuring robustness in crack detection across different contexts. In addition to improving accuracy and consistency, this machine learning-based approach enhances safety by enabling the inspection of difficult-to-reach or hazardous areas. Furthermore, it enhances scalability and efficiency by rapidly assessing large or multiple sites. This approach allows for early intervention, which can prevent potential structural failures, minimise repair costs, and extend the lifespan of concrete infrastructures. The outcomes indicate that the model is highly effective, accurately classifying 39,482 out of 40,000 instances, which equates to an accuracy rate of 98.705%. Moreover, the weighted average metrics, including True Positive Rate, False Positive Rate, Precision, Recall, and F-Measure, all closely align with this high degree of accuracy, with almost all metrics at 0.987, demonstrating that the CNN model performance in accuracy and efficiency. Meanwhile, the results from the 70/30 Percentage Split method are in the same direction, representing the model's high performance. This yielded 11,829 (98.575%) correct instance predictions and only 171 (1.425%) incorrect instances.
References
Cement, G. F. P. (12 September 2019). The Importance of Concrete in Construction Projects. GFP Cement Contractors LLC. https://gfpcement.com/the-importance-of-concrete-in-construction-projects/
Ding, W., Yang, H., Yu, K., and Shu, J. (2023). Crack detection and quantification for concrete structures using UAV and transformer. Automation in Construction, 152, 104929. https://doi.org/10.1016/j.autcon.2023.104929
Golding, V. P., Gharineiat, Z., Munawar, H. S., and Ullah, F. (2022). Crack Detection in Concrete Structures Using Deep Learning. Sustainability, 14(13), 8117. https://doi.org/10.3390/su14138117
Imran, H., Al-Abdaly, N. M., Shamsa, M. H., Shatnawi, A., Ibrahim, M., and Ostrowski, K. A. (2022). Development of Prediction Model to Predict the Compressive Strength of Eco-Friendly Concrete Using Multivariate Polynomial Regression Combined with Stepwise Method. Materials, 15(317), 317. https://doi.org/10.3390/ma15010317
Kaggle. (n.d.). Concrete Crack Images for Classification. Kaggle. https://www.kaggle.com/datasets/arnavr10880/concrete-crack-images-for-classification.
Li, Z., Yoon, J., Zhang, R., Rajabipour, F., Iii, W. V. S., Dabo, I., and Radlinska, A. (2022). Machine learning in concrete science: Applications, challenges, and best practices. Npj Computational Materials, 8(1), 1–17. https://doi.org/10.1038/s41524-022-00810-x
Rubio, J. de J., Garcia, D., Rosas, F. J., Hernandez, M. A., Pacheco, J., and Zacarias, A. (2024). Stable convolutional neural network for economy applications. Engineering Applications of Artificial Intelligence, 132, 107998. https://doi.org/10.1016/j.engappai.2024.107998
Sami, B. H. Z., Sami, B. F. Z., Kumar, P., Ahmed, A. N., Amieghemen, G. E., Sherif, M. M., and El-Shafie, A. (2023). Feasibility analysis for predicting the compressive and tensile strength of concrete using machine learning algorithms. Case Studies in Construction Materials, 18, e01893. https://doi.org/10.1016/j.cscm.2023.e01893
Why concrete testing is important in engineering & construction. (2 november 22022). Douglas Partners. https://www.douglaspartners.com.au/news/the-importance-of-concrete-testing.
Witten, I. H., Frank, E., Hall, M. A., and Pal, C. J. (2016). Data Mining: Practical Machine Learning Tools and Techniques. In Data Mining: Practical Machine Learning Tools and Techniques. https://doi.org/10.1016/c2009-0-19715-5.
Yasin, M., Sarıgül, M., and Avci, M. (2024). Logarithmic Learning Differential Convolutional Neural Network. Neural Networks, 172, 106114. https://doi.org/10.1016/j.neunet.2024.106114
Yokoyama, S., and Matsumoto, T. (2017). Development of an Automatic Detector of Cracks in Concrete Using Machine Learning. Procedia Engineering, 171, 1250–1255. https://doi.org/10.1016/j.proeng.2017.01.418
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Chandrakasem Rajabhat University

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
บทความที่ได้รับการตีพิมพ์เป็นลิขสิทธิ์ของมหาวิทยาลัยราชภัฏจันทรเกษม
ข้อความที่ปรากฎในบทความแต่ละเรื่องในวารสารวิชาการเล่มนี้เป็นความคิดเห็นส่วนตัวของผู้เขียนแต่ละท่าน ไม่เกี่ยวข้องกับมหาวิทยาลัยราชภัฏจันทรเกษม และคณาจารย์ท่านอื่นในมหาวิทยาลัยแต่อย่างใด ความรับผิดชอบองค์ประกอบทั้งหมดของบทความแต่ละเรื่องเป็นของผู้เขียนแต่ละท่าน หากมีความผิดพลาดใดๆ ผู้เขียนแต่ละท่านจะรับผิดชอบบทความของตัวเองแต่เพียงผู้เดียว
For Author

