Study on the Properties of Soil-Cement Mixed with Fly Ash and Sodium Hydroxide
Keywords:
Unconfined Compressive Strength, Elastic Modulus, Soil-Cement, Fly Ash, Sodium HydroxideAbstract
This article presents a study on the properties of cement-stabilized clay modified with fly ash and sodium hydroxide. The clay samples were obtained from the Mor Suap Reservoir Project. Test specimens were categorized into four groups: (1) cement-stabilized clay, (2) cement-stabilized clay with fly ash, (3) cement-stabilized clay with sodium hydroxide, and (4) cement-stabilized clay with both fly ash and sodium hydroxide. Each group was prepared with five cement contents: 220, 230, 240, 250, and 260 kilograms per cubic meter by volume. The clay used was classified as CL and passed through a No. 4 sieve, while the fly ash passed through a No. 325 sieve. A 5-molar sodium hydroxide solution was used in the relevant mixtures. Unconfined compressive strength (UCS) tests were conducted after curing periods of 1, 7, 14, and 28 days. The results indicated that UCS values increased with higher cement content across all specimen groups. The specimens incorporating sodium hydroxide exhibited higher UCS and elastic modulus values compared to those with only cement or cement with fly ash. The addition of sodium hydroxide enhanced silica dissolution from the blended materials, promoting the formation of cementitious products primarily through hydration reactions. The contribution of pozzolanic reactions was found to be minimal in comparison. The UCS results were consistent with the findings from microstructural analysis.
References
รุ้งลาวัลย์ ราชัน, และทรงสุดา วิจารณ์. (2556). การพัฒนาแรงอัดแกนเดียวและโครงสร้างจุลภาคของดินเหนียวอ่อนกรุงเทพบดอัดผสมกากแคลเซียมคาร์ไบด์และเถ้าชีวมวล. วารสารวิจัยและพัฒนา มจธ., 36(1), 51-71.
สุขสันติ์ หอพิบูลสุข. (2551). ลักษณะทางวิศวกรรมของดินเหนียวโคราชบดอัดผสมและไม่ผสมซีเมนต์และเถ้าลอย. ทุนวิจัยมหาวิทยาลัยเทคโนโลยีสุรนารี, 67 หน้า.
อภิชิต คำภาหล้า, ทรงวิทย์ ชินกลาง, และคำภี จิตชัยภูมิ. (2560, 15-17 กุมภาพันธ์). อิทธิพลของเถ้าลอยต่อกำลังของดินซีเมนต์ภายใต้การทำลายของซัลเฟต (หน้า GTE-04-GTE-09). การประชุมวิชาการคอนกรีตประจำปี ครั้งที่ 12, เพชรบุรี.
Abdullah, H. H., & Shahin, M. A. (2022). Geomechanical Behaviour of Clay Stabilised with Fly-Ash-Based Geopolymer for Deep Mixing. Geosciences, 12(207), 1-15. https://doi.org/10.3390/geosciences12050207
Ahmad, M. M., Razak, R. A., Abdullah, M. M. A. B., Muhamad, K., Mydin, A. O., & Sandu. A. V. (2024). Stabilization of Lateritic Soil using Fly Ash Based Geopolymer. Archives of Metallurgy and Materials, 69, 1165-1173. https://doi.org/10.24425/amm.2024.150939
Cong, M., Longzhu, C., & Bing, C. (2014). Analysis of Strength Development in Soft Clay Stabilized with Cement-Based Stabilizer. Construction and Building Materials, 71, 354–362. https://doi.org/10.1016/j.conbuildmat.2014.08.087
Dang, V. Q., Chau, V. N., Thuyen, N. T., Quan, H. A., Hieu, V. T., Vinh, D. T., Ganja, C. S., & Ho, L. S. (2023). Mechanical Properties and Microstructures of Cement-Treated Soils: A Review. Journal of Science and Transport Technology, 3(4), 52-68. https://doi.org/10.58845/jstt.utt.2023.en.3.4.52-68
Jamsawang, P., Poorahong, H., Yoobanpot, N., Songpiriyakij, S., & Jongpradist, P. (2017). Improvement of Soft Clay with Cement and Bagasse Ash Waste. Construction and Building Materials, 154, 61–71. https://doi.org/10.1016/j.conbuildmat.2017.07.188
Nanda, R. P., & Priya, N. (2024). Geopolymer as Stabilising Materials in Pavement Constructions: A Review. Cleaner Waste Systems, 7, 100134. https://doi.org/10.1016/j.clwas.2024.100134
Redjem, M., Hidjeb, M., Lamri, I., & Boudjellal, K. (2023). Unconfined Compressive Strength of Weakly Cemented Compacted Sand under Different Loads. Geotechnical Engineering Journal of the SEAGS & AGSSEA, 54(4), 34-41. https://doi.org/10.14456/seagj.2023.5
Ridtirud, C., Leekongbub, S., & Chindaprasirt, P. (2018). Compressive Strength of Soil Cement Base Mixed with Fly Ash – Based Geopolymer. International Journal of GEOMATE, 14(46), 82-88. Retrieved from https://geomatejournal.com/geomate/article/view/2882
Rattanasak, U., & Chindaprasirt, P. (2009). Influence of NaOH Solution on the Synthesis of Fly Ash Geopolymer. Minerals Engineering, 22(12), 1073-1078. https://doi.org/10.1016/j.mineng.2009.03.022
Sofri, L. A., Abdullah, M. M. A. B., Hasan, M. R. M., & Huang, Y. (2020). The Influence of Sodium Hydroxide Concentration on Physical Properties and Strength Development of High Calcium Fly Ash Based Geopolymer as Pavement Base Materials. IOP Conference Series Materials Science and Engineering, 864(1), 012016. https://doi.org/10.1088/1757-899X/864/1/012016
Suksiripattanapong, C., Sakdinakorn, R., Tiyasangthong, S., Wonglakorn, N., Phetchuy, C., & Tabyang, W. (2022). Properties of Soft Bangkok Clay Stabilized with Cement and Fly Ash Geopolymer for Deep Mixing Application. Case Studies in Construction Materials, 16, e01081. https://doi.org/10.1016/j.cscm.2022.e01081
Widarto, R., Suparma, L. B., & Siswosukarto, S. (2023). Base Course Stabilization Performance Using Fly Ash-Based Geopolymers and Their Effect on Water Quality Standards. UKaRsT, 7(1), 1-16. https://doi.org/10.30737/ukarst.v7i2.4235
Yenginar, Y., & Olgun, M. (2024). Physical, Mechanical, and Microstructural Characteristics of Fly Ash Replaced Cement Deep Mixing Columns. Bulletin of Engineering Geology and the Environment, 83(309), 1-24. https://doi.org/10.1007/s10064-024-03800-z
Downloads
Published
How to Cite
License
Copyright (c) 2025 Uthenthawai Engineering and Architecture Journal

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.