GradFace: Attendance Registration System Using Face Recognition for The Graduate School, Kasetsart University

ผู้แต่ง

  • Sarach Tuomchomtam Human-Centered AI Laboratory (KU-HCAI) and Department of Computer Science, Faculty of Science, Kasetsart University
  • Suttipong Meuntaboot Department of Computer Science, Faculty of Science, Kasetsart University
  • Passapong Jittavanit The Graduate School, Kasetsart University
  • Sornchai Laksanapeeti Department of Computer Science, Faculty of Science, Kasetsart University

คำสำคัญ:

Face Recognition, Attendance Registration, Computer Vision, AWS Rekognition, YOLO

บทคัดย่อ

Traditional attendance methods at The Graduate School, Kasetsart University can be time-consuming and susceptible to errors, while barcode systems have hardware needs and are susceptible to impersonation. To address these issues, we propose GradFace, an automated attendance system utilizing computer vision. GradFace uses a Gradio interface, employs the YOLOv11n-face model for real-time face detection, and leverages AWS Rekognition for accurate face identification. The system supports indexing faces from images linked to existing data and facilitates live registration via webcam. Experimental deployment during university events demonstrated stable performance and accurate face recognition across varied conditions (e.g., glasses, hairstyles, image quality), and positive feedback regarding convenience from 273 attendees. While network dependency and hardware requirements were noted as areas for improvement, GradFace successfully streamlined the registration process, generating attendance records and timestamped images with a latency of 1-2 seconds. Future work aims to enhance scalability, improve data management, explore local recognition.

เอกสารอ้างอิง

Abid, A., Abdalla, A., Abid, A., Khan, D., Alfozan, A., & Zou, J. (2019). Gradio: Hassle‐free sharing and testing of ML models in the wild (arXiv:1906.02569) [Preprint]. arXiv. https://doi.org/10.48550/arXiv.1906.02569

akanametov. (2023). Yolo-face [Computer software]. GitHub. https://github.com/akanametov/yolo-face

Indla, R. K. (2021). An overview on Amazon Rekognition technology [Master’s thesis, California State University, San Bernardino]. CSUSB ScholarWorks. https://scholarworks.lib.csusb.edu/etd/1263

Jocher, G., Chaurasia, A., Stoken, A., Borovec, J., NanoCode012, Kwon, Y., Michael, K., TaoXie, Fang, J., imyhxy, Lorna, Zeng, Y., Wong, C., V, A., Montes, D., Wang, Z., Fati, C., Nadar, J., Laughing, … Jain, M. (2022). ultralytics/yolov5: v7.0 – YOLOv5 SOTA realtime instance segmentation (Version v7.0) [Computer software]. Zenodo. https://doi.org/10.5281/zenodo.7347926

Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), 91-110. https://doi.org/10.1023/B:VISI.0000029664.99615.94

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 779-788. https://doi.org/10.1109/CVPR.2016.91

Ren, X., Lattas, A., Gecer, B., Deng, J., Ma, C., & Yang, X. (2023). Facial geometric detail recovery via implicit representation. 2023 IEEE 17th International Conference on Automatic Face and Gesture Recognition (FG), 1-8. https://doi.org/10.1109/FG57933.2023.10042505

Sredojev, B., Samardzija, D., & Posarac, D. (2015). WebRTC technology overview and signaling solution design and implementation. 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), 1006-1009. https://doi.org/10.1109/MIPRO.2015.7160422

Viola, P., & Jones, M. (2001). Rapid object detection using a boosted cascade of simple features. Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2001), I-511–I-518. https://doi.org/10.1109/CVPR.2001.990517

Yang, S., Luo, P., Loy, C. C., & Tang, X. (2016). WIDER FACE: A face detection benchmark. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 5525–5533. https://doi.org/10.1109/CVPR.2016.596

Zhang, K., Zhang, Z., Li, Z., & Qiao, Y. (2016). Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Processing Letters, 23(10), 1499-1503. https://doi.org/10.1109/LSP.2016.2603342

หน้าปก1

ดาวน์โหลด

เผยแพร่แล้ว

2025-12-23

รูปแบบการอ้างอิง

Tuomchomtam, S., Meuntaboot, S., Jittavanit, P., & Laksanapeeti, S. (2025). GradFace: Attendance Registration System Using Face Recognition for The Graduate School, Kasetsart University. วารสารวิชาการวิทยาศาสตร์ มหาวิทยาลัยราชภัฎจันทรเกษม, 35(2), 68–78. สืบค้น จาก https://ph03.tci-thaijo.org/index.php/scicru/article/view/4105

ฉบับ

ประเภทบทความ

บทความวิจัย