The Two-Stage Anaerobic Digestion System Using Solar Heat Energy

Authors

  • thaithat Sudsuansee Department of Industrial Engineering, Faculty of Engineering and Industrial Technology, Kalasin University
  • Supakit Sergsiri Department of Industrial Engineering, Faculty of Engineering and Industrial Technology, Kalasin University
  • Wanrop Khanthirat สาขาวิชาวิศวกรรมอุตสาหการ คณะวิศวกรรมศาสตร์และเทคโนโลยีอุตสาหกรรม มหาวิทยาลัยกาฬสินธุ์

DOI:

https://doi.org/10.14456/jeit.2023.7

Keywords:

Biogas, Food waste, Parabolic dome , Solar energy

Abstract

Garbage is a major problem in Thailand and the quantity is increasing every year. The way to help reduce waste is to convert it into alternative energy such as biogas. This research aims to study biogas production from municipal waste using a two-stage anaerobic digester system heated by solar energy. Two experiments were performed, the first to find the relationship between the amount of biogas and the amount of food waste fed into the system with volume of 0.5 kg, 1 kg, 1.5 kg and 2 kg per day. And a second experiment to compare the results of fermentation in parabolic dome and in greenhouses. The results of the experiment showed that, when the system was fed 0.5, 1, 1.5 and 2 kg of food waste per day, the average total biogas content were 1.340, 1.592, 1.801 and 1.927 liters per day, respectively. And when the system has been implemented until the 30-day period, the results show that the feeding amount of food waste 0.5, 1, 1.5 and 2 kg per day. It can produce the highest accumulated biogas at 20.41, 23.57, 26.34 and 28.33 liters respectively. Another study was conducted to compare the effect of fermentation in parabolic domes and in greenhouses. The results of the experiment showed that the average daily biogas content of fermentation in the greenhouse and parabolic domes was 1.59 and 1.72 liters, respectively, and the accumulated biogas content in the houses and in the parabolic domes was 23.57 and 25.58 liters, respectively. It can be seen that the experiments in the parabolic dome yielded higher biogas content than in greenhouses. In the parabolic dome, average daily biogas content was 8.17% higher than in the greenhouse experiment, and the average accumulated biogas content throughout the experiment was 8.52% higher than in the greenhouse experiment.

References

[1] วรรษมล ลีลาพิทักษ์, "การศึกษาการจัดการระบบผลิตก๊าซชีวภาพด้วยกระบวนการหมักไร้อากาศจากขยะมูลฝอยชุมชนแบบเปียกและแห้ง: กรณีศึกษาเทศบาลนครราชสีมา และเทศบาลตำบลสูงเนิน จังหวัดนครราชสีมา," วิทยานิพนธ์, มหาวิทยาลัยสงขลานครินทร์, กรุงเทพฯ, 2563.

[2] อรวรรณ วัฒนยมนาพร, "การหมักร่วมของขยะเศษอาหารกับกากตะกอนน้ำเสียชุมชนโดยใช้ถังหมักไร้อากาศแบบสองขั้นตอนสำหรับผลิตก๊าซชีวภาพ," วิทยานิพนธ์, จุฬาลงกรณ์มหาวิทยาลัย, กรุงเทพฯ, 2553.

[3] M. Kim, Y. H. Ahn and R. E. Speece, "Comparative process stability and efficiency of anaerobic digester: mesophilic vs. thermophilic," Water Research, vol. 38, pp. 3645-3650, 2002.

[4] J. H. Ahn and C. F. Forster, "The effect of temperature variations on the performance of mesophilic and thermophilic anaerobic filters treating a simulated papermill wastewater," Process Biochemistry, vol. 37, pp. 589-594, 2002.

[5] G. Schober, J. Schafer, U. Schmid-Staiger and W. Trosch, "One and two-stage digestion of solid organic waste," Water Research, vol. 33, no. 3, pp. 854-860, 1999.

[6] S. Janjai and B. K. Bala, "Solar drying technology," Food Engineering Reviews, vol. 4, pp. 16-54, 2012.

[7] กรมพัฒนาพลังงานทดแทนและอนุรักษ์พลังงาน (พพ.), คู่มือโครงการสนับสนุนการลงทุนติดตั้งใช้งานระบบอบแห้งพลังงานแสงอาทิตย์, พิมพ์ครั้งที่ 1, นครปฐม: บริษัท เพชรเกษมพริ้นติ้ง กรุ๊ป จำกัด, 2562.

[8] S. Janjai, P. Intawee, J. Kaewkiewa, C. Sritus and V. Khamvongsa, "A large-scale solar greenhouse dryer using polycarbonate cover: Modeling and testing in a tropical environment of Lao People’s Democratic Republic," Renewable Energy, vol. 36, pp. 1053-1062, 2011.

[9] O. Ince, "Performance of a two-phase anaerobic digestion system when treating dairy wastewater," Water Research, vol. 32, no. 9, pp. 2707-2713, 1998.

[10] Y. A. Cengel and A. J. Ghajar, Heat and Mass Transfer: Fundamentals and Applications, 5th Edition. McGraw-Hill Higher Education, New York, 2014.

[11] H. Bouallagui, R. B. Cheikh, L. Marouani and M. Hamdi, "Mesophilic biogas production from fruit and vegetable waste in a tubular digester," Bioresource Technology, pp. 1-5, 2002.

[12] D. Deublein and A. Steinhauser, Biogas from Waste and Renewable Resources, Weinheim: Wiley-VCH, 2011.

[13] M. H. Gerardi, The Microbiology of Anaerobic Digesters, Hoboken: John Wiley & Sons, Inc., 2003.

[14] D. Kondusamy and A. S. Kalamdhad, "Pre-treatment and anaerobic digestion of food," Journal of Environmental Chemical, vol. 2, pp. 1821-1830, 2014.

[15] C. Zheng, H. Su and T. T. Baeyens, "Reviewing the anaerobic digestion of food waste for biogas production," Renewable Sustain Energy Review, vol. 38, pp. 383-392, 2014.

[16] K. Karim, R. Hoffman, K. K. Thomas and M. H. Al-Dahhan, "Anaerobic digestion of animal waste: Effect of mode of mixing," Water Research, vol. 39, no. 15, pp. 3597-3606, 2005.

Downloads

Published

2023-04-29

How to Cite

[1]
thaithat Sudsuansee, S. Sergsiri, and W. Khanthirat, “The Two-Stage Anaerobic Digestion System Using Solar Heat Energy”, JEIT, vol. 1, no. 1, pp. 10–22, Apr. 2023.