On the Diophantine equations 21^x+4^y=z^2

Authors

  • Thanwarat Butsan Corresponding author
  • Nitima Phrommarat
  • Natthamon Kanchai

Keywords:

Diophantine equation, Prime numbers,, Unique solution

Abstract

The objective of this work is to study the existence of are non-negative integers  solution of  the diophantine equation 21x+4y=z2 .

References

Suvarnamani, A. (2011). Solutions of the Diophantine equation 2^x+p^y=z^2. International Journal of Mathematical Sciences and Applications, 1(13), p. 1415-1419.

Sroysang, B. (2012). More on the Diophantine Equation 8^x+19^y=z^2. International Journal of Pure and Applied Mathematics, 81(4), p. 601-604.

Sroysang, B. (2013). More on the Diophantine Equation 2^x+3^y=z^2. International Journal of Pure and Applied Mathematics, 84(2), p. 133-137.

Sroysang, B. (2013). More on the Diophantine Equation 7^x+8=z^2.International Journal of Pure and Applied Mathematics, 84(1), p. 111-114.

Sroysang, B. (2014). More on the Diophantine Equation 8^x+13^y=z^2. International Journal of Pure and Applied Mathematics, 90(1), p. 69-72.

Sroysang, B. (2014). More on the Diophantine Equation 8^x+59^y=z^2. International Journal of Pure and Applied Mathematics, 91(1), p. 139-142.

Mihilescu, P. (2004). Primary cycolotomic units and a proof of Catalan’s conjecture. Journal für die reine und angewandte Mathematik, 27(2004), p. 167 - 195.

Downloads

Published

2024-01-12