Using Smartphone for Measuring the Magnetic Field Produced by the Current Flow in a Single Straight Line
Main Article Content
บทคัดย่อ
In this study, we design and build an experimental kit to use a smartphone to measure magnetic fields in accordance with Ampere's Law. The Phyphox application was used to measure the magnetic field created by a single straight-line current flow. We provide a method for removing the noise from the other electrical equipment in our experiment as well as the Earth's magnetic field. Air has a permeability of about 1.164 - 1.233 x10-6 N A-2.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
เนื้อหาและข้อมูลในบทความที่ลงตีพิมพ์ใน Journal of Advanced Development in Engineering and Science ถือเป็นข้อคิดเห็นและความรับผิดชอบของผู้เขียนบทความโดยตรง ซึ่งกองบรรณาธิการวารสารไม่จำเป็นต้องเห็นด้วยหรือร่วมรับผิดชอบใดๆ
บทความ ข้อมูล เนื้อหา ฯลฯ ที่ได้รับการตีพิมพ์ในJournal of Advanced Development in Engineering and Science ถือเป็นลิขสิทธิ์ของ Journal of Advanced Development in Engineering and Science หากบุคคลหรือหน่วยงานใดต้องการนำทั้งหมดหรือส่วนหนึ่งส่วนใดไปเผยแพร่ต่อหรือเพื่อกระทำการใดๆ จะต้องได้รับอนุญาตเป็นลายลักษณ์อักษรจาก Journal of Advanced Development in Engineering and Scienceก่อนเท่านั้น
References
Galili, I. (2018). Physics and mathematics as interwoven disciplines in science education. Science & Education, 27(1), 7-37.
Liepertz, S., & Borowski, A. (2019). Testing the Consensus Model: relationships among physics teachers’ professional knowledge, interconnectedness of content structure and student achievement. International Journal of Science Education, 41(7), 890-910.
Hwang, G. J., et al.(2019). Effects of integrating a concept mapping-based summarization strategy into flipped learning on students’ reading performances and perceptions in Chinese courses. British Journal of Educational Technology, 50(5), 2703-2719.
Hochberg, K., et al. (2018). Using smartphones as experimental tools-effects on interest, curiosity, and learning in physics education. Journal of Science Education and Technology, 27, 385-403.
Halliday, D., et al.(2013). Fundamentals of physics. New York: John Wiley & Sons.
Silva, N. (2012). Magnetic field sensor. The Physics Teacher, 50(6), 372-373.
Ogawara, Y., et al.(2017). Observation of the magnetic field using a smartphone. The Physics Teacher, 55(3), 184-185.
Arribas, E., et al. (2015). Measurement of the magnetic field of small magnets with a smartphone: a very economical laboratory practice for introductory physics courses. European Journal of Physics, 36(6), 065002.
Pili, U., & Violanda, R. (2018). Measuring average angular velocity with a smartphone magnetic field sensor. The Physics Teacher, 56(2), 114-115.
Pili, U., & Violanda, R. (2019). Measuring a spring constant with a smartphone magnetic field sensor. The Physics Teacher, 57(3), 198-199.
Monteiro, M., et al. (2020). Magnetic fields produced by electric railways. The Physics Teacher, 58(8), 600-601.
Monteiro, M., et al. (2017). Magnetic field ‘flyby’ measurement using a smartphone’s magnetometer and accelerometer simultaneously. The Physics Teacher, 55(9), 580-581.
Vogt, P., & Kuhn, J. (2012). Analyzing simple pendulum phenomena with a smartphone acceleration sensor. The Physics Teacher, 50(7), 439-440.
Vogt, P., & Kuhn, J. (2013). Analyzing radial acceleration with a smartphone acceleration sensor. The Physics Teacher, 51, 182-183.
Wannous, J., & Horvath, P. (2023). Precise measurements using a smartphone’s magnetometer—Measuring magnetic fields and permeability. The Physics Teacher, 61(1), 36-39.
Carroll, R., & Lincoln, J. (2020). Phyphox app in the physics classroom. The Physics Teacher, 58(8), 606-607.
Arabasi, S., & Al-Taani, H. (2016). Measuring the Earth’s magnetic field dip angle using a smartphone-aided setup: a simple experiment for introductory physics laboratories. European Journal of Physics, 38(2), 025201.