การจําลองเชิงตัวเลขของการไหลแบบคาวิเตชั่นรอบไฮโดรฟอยล์

ผู้แต่ง

  • ยอดชาย เตียเปิ้น ภาควิชาวิศวกรรมทางทะเล คณะพาณิชยนาวีนานาชาติ มหาวิทยาลัยเกษตรศาสตร์ วิทยาเขตศรีราชา
  • ไทยทัศน์ สุดสวนสี คณะวิศวกรรมศาสตร์และเทคโนโลยีอุตสาหกรรม มหาวิทยาลัยกาฬสินธุ์

DOI:

https://doi.org/10.14456/jeit.2023.10

คำสำคัญ:

คาวิเตชั่น, ไฮโดรฟอยล์, การจําลองเชิงตัวเลข, คุณลักษณะของการไหล, แบบจําลองคาวิเตชั่น

บทคัดย่อ

คาวิเตชั่นเป็นปรากฏการณ์ของการก่อตัวและการยุบตัวของฟองอากาศที่มีผลต่อประสิทธิภาพของการไหลในไฮโดรฟอยล์ซึ่งถูกนำไปใช้งานในด้านต่างๆที่หลากหลาย เทคนิคการจําลองเชิงตัวเลขได้กลายเป็นเครื่องมือที่มีประสิทธิภาพสําหรับการตรวจสอบและทําความเข้าใจการไหลของคาวิเตชั่นรอบไฮโดรฟอยล์ บทความนี้ได้นำเสนอภาพรวมที่ครอบคลุมของความก้าวหน้าล่าสุดในการจําลองเชิงตัวเลขของการไหลแบบคาวิเตชั่นรอบไฮโดรฟอยล์ โดยเน้นวิธีการที่สําคัญรวมถึงความท้าทายและโอกาสในอนาคตของเรื่องนี้

References

[1] C. E. Brennen, Cavitation and Bubble Dynamics. Oxford University Press, 1995.

[2] A. K. Singhal, "Mathematical basis and validation of the full cavitation model," Journal of Fluids Engineering, vol. 124.3, pp. 617-624, 2002.

[3] E. Lauer, X. Y. Hu, S. Hickel, and N. A. Adams, "Numerical modelling and investigation of symmetric and asymmetric cavitation bubble dynamics," Computers & Fluids, vol. 69, pp. 1-19, 2012.

[4] G. L. Chahine, A. Kapahi, J.-K. Choi, and C.-T. Hsiao, "Modeling of surface cleaning by cavitation bubble dynamics and collapse," Ultrasonics Sonochemistry, vol. 29, pp. 528-549, 2016.

[5] F. Daude, A. S. Tijsseling, and P. Galon, "Numerical investigations of water-hammer with column-separation induced by vaporous cavitation using a one-dimensional Finite-Volume approach," Journal of Fluids and Structures, vol. 83, pp. 91-118, 2018.

[6] T. Barberon and P. Helluy, "Finite volume simulation of cavitating flows," Computers & Fluids, vol. 34, no. 7, pp. 832-858, 2005.

[7] A. Kumar and J. F. Booker, "A Finite Element Cavitation Algorithm," Journal of Tribology, vol. 113, pp. 276-286, 1991.

[8] G. Bayada, M. Chambat, and M. E. Alaoui, "Variational Formulations and Finite Element Algorithms for Cavitation Problems," Journal of Tribology, vol. 112, pp. 398-403, 1990.

[9] N. E. Fine and S. A. Kinnas, "A Boundary Element Method for the Analysis of the Flow Around 3-D Cavitating Hydrofoils," J Ship Res, vol. 37, pp. 213–224, 1993.

[10] H. Lee and S. A. Kinnas, "Application of a Boundary Element Method in the Prediction of Unsteady Blade Sheet and Developed Tip Vortex Cavitation on Marine Propellers," J Ship Res, vol. 48, pp. 15-30, 2004.

[11] M. Passandideh-Fard and E. Roohi, "Transient simulations of cavitating flows using a modified volume-of-fluid (VOF) technique," International Journal of Computational Fluid Dynamics, vol. 22, no. 1-2, pp. 97-114, 2008.

[12] M. Koch, C. Lechner, F. Reuter, K. Köhler, R. Mettin, and W. Lauterborn, "Numerical modeling of laser generated cavitation bubbles with the finite volume and volume of fluid method, using OpenFOAM," Computers & Fluids, vol. 126, pp. 71-90, 2016.

[13] J. Huang and H. Zhang, "Level set method for numerical simulation of a cavitation bubble, its growth, collapse and rebound near a rigid wall," Acta Mech. Sin, vol. 23, pp. 645–653 2007.

[14] Yu A, Tang Q, and Z. D, "Cavitation Evolution around a NACA0015 Hydrofoil with Different Cavitation Models Based on Level Set Method," Applied Sciences, vol. 9, no. 4, p. 758, 2019.

[15] T. KINOSHITA, R. KIMURA, and Y. HAGIWARA, "Numerical Simulation of Carbon-dioxide Bubbles in Water Flow Using a Phase-field Method," Japanese journal of multiphase flow, vol. 29, no. 5, pp. 533-541, 2016.

[16] A. Y. Kravtsova, D. M. Markovich, K. S. Pervunin, M. V. Timoshevskiy, and K. Hanjalić, "High-speed visualization and PIV measurements of cavitating flows around a semi-circular leading-edge flat plate and NACA0015 hydrofoil," International Journal of Multiphase Flow, vol. 60, pp. 119-134, 2014.

[17] K. Yamamoto, "Pressure measurements and high speed visualizations of the cavitation phenomena at deep part load condition in a Francis turbine," IOP Conference Series: Earth and Environmental Science, vol. 22, 2014.

[18] T. M. Pham, F. Larrarte, and D. H. Fruman, "Investigation of Unsteady Sheet Cavitation and Cloud Cavitation Mechanisms," ASME. J. Fluids Eng., vol. 121, no. 2, pp. 289–296, June 1999.

[19] B. K. Sreedhar, S. K. Albert, and A. B. Pandit, "Cavitation damage: Theory and measurements – A review," Wear, vol. 372–373, pp. 177-196, 2017.

[20] N. M. Nouri, M. Kamran, K. Mostafapur, and R. Bahadori, "Design and fabrication of a force-moment measurement system for testing of the models in a water tunnel," Modares Mechanical Engineering, vol. 14, no. 14, pp. 291-298, 2015.

[21] J.-A. Astolfi, J.-B. Leroux, P. Dorange, J.-Y. Billard, F. Deniset, and S. d. L. Fuente, "An Experimental Investigation of Cavitation Inception and Development on a Two-Dimensional Hydrofoil," J Ship Res, vol. 44, pp. 259–269, 2000.

[22] W. Ye, Y. Yi, and X. Luo, "Numerical modeling of unsteady cavitating flow over a hydrofoil with consideration of surface curvature," Ocean Engineering, vol. 205, 2020.

[23] X. Long, H. Cheng, B. Ji, and R. E. A. Arndt, "Numerical investigation of attached cavitation shedding dynamics around the Clark-Y hydrofoil with the FBDCM and an integral method," Ocean Engineering, vol. 137, pp. 247-261, 2017.

[24] J. Liu et al., "Numerical investigation of shedding dynamics of cloud cavitation around 3D hydrofoil using different turbulence models," European Journal of Mechanics - B/Fluids, vol. 85, pp. 232-244, 2021.

[25] Y. Liu, Q. Wu, B. Huang, H. Zhang, W. Liang, and G. Wang, "Decomposition of unsteady sheet/cloud cavitation dynamics in fluid-structure interaction via POD and DMD methods," International Journal of Multiphase Flow, vol. 142, p. 103690, 2021.

[26] A. Movahedian, M. Pasandidehfard, and E. Roohi, "LES investigation of sheet-cloud cavitation around a 3-D twisted wing with a NACA 16012 hydrofoil," Ocean Engineering, vol. 192, p. 106547, 2019.

[27] W. Wang, Z. Li, M. Liu, and X. Ji, "Influence of water injection on broadband noise and hydrodynamic performance for a NACA66 (MOD) hydrofoil under cloud cavitation condition," Applied Ocean Research, vol. 115, p. 102858, 2021.

[28] H. Sun, "Numerical study of hydrofoil geometry effect on cavitating flow," J Mech Sci Technol, vol. 26, pp. 2535–2545, 2012.

[29] Z. Wang, H. Cheng, and B. Ji, "Numerical investigation of condensation shock and re-entrant jet dynamics around a cavitating hydrofoil using a dynamic cubic nonlinear subgrid-scale model," Applied Mathematical Modelling, vol. 100, pp. 410-431, 2021.

[30] Z.-h. LIU, B.-l. WANG, X.-x. PENG, and D.-c. LIU, "Calculation of tip vortex cavitation flows around three-dimensional hydrofoils and propellers using a nonlinear k-ɛ turbulence model," Journal of Hydrodynamics, Ser. B, vol. 28, no. 2, pp. 227-237, 2016.

[31] T. Sudsuansee, U. Nontakaew, and Y. Tiaple, "Simulation of leading edge cavitation on bulb turbine," Songklanakarin Journal of Science and Technology, vol. 33, 2011.

[32] C. Rhie and W. Chow, "Numerical study of the turbulent flow past an airfoil with trailing edge separation," AIAA J. , vol. 21, pp. 1525–1532, 1983.

[33] V. Kasi, "A Review of Numerical Models for the Simulation of Cavitating Flows in Hydrofoils, Thesis," Politecnico di Milano, 2021.

Downloads

เผยแพร่แล้ว

28-06-2023

How to Cite

[1]
เตียเปิ้น ย. . และ สุดสวนสี ไ., “การจําลองเชิงตัวเลขของการไหลแบบคาวิเตชั่นรอบไฮโดรฟอยล์”, JEIT, ปี 1, ฉบับที่ 3, น. 1–16, มิ.ย. 2023.