Application of the Hybrid GRA-MARCOS Technique for Decision-Making in the Selection of Artificial Intelligence Technologies to Enhance Production and Management Efficiency in Industrial Plants
DOI:
https://doi.org/10.14456/jeit.2025.24Keywords:
Multi-Criteria Decision Making, Artificial Intelligence, Hybrid GRA-MARCOSAbstract
In an era where the industrial sector is faced with intense competition and rapid technological advancement, the strategic adoption of artificial intelligence (AI) technologies has become essential for enhancing production and management efficiency. However, selecting the most suitable AI technology tailored to the specific context of each organization remains a complex challenge due to the diversity of available options, each offering different capabilities and limitations. This study introduces the application of the Hybrid GRA-MARCOS technique, which integrates the strengths of Grey Relational Analysis (GRA) noted for its ability to handle incomplete and uncertain data with the MARCOS method, which ranks alternatives based on both ideal and anti-ideal solutions. This hybrid approach facilitates a systematic and transparent decision-making process for AI technology selection. The research employed expert input from 15 industrial engineers to evaluate 14 AI alternatives using 6 key criteria: accuracy, coding capability, system integration, processing speed, cost-effectiveness, and real-world reliability. The analysis revealed that Gemini (by Google) emerged as the most suitable alternative, followed by Microsoft Copilot, IBM Watsonx, and Grok. These results affirm the robustness of the Hybrid GRA-MARCOS method in supporting multi-criteria decision-making in complex industrial environments with high precision and credibility.
References
[1] I. Ahmed, G. Jeon, and F. Piccialli, "From Artificial Intelligence to Explainable Artificial Intelligence in Industry 4.0: A Survey on What, How, and Where," IEEE Transactions on Industrial Informatics, vol. 18, no. 8, pp. 5031-5042, 2022.
DOI: 10.1109/TII.2022.3146552.
[2] R. S. Peres, X. Jia, J. Lee, K. Sun, A. W. Colombo, and J. Barata, "Industrial Artificial Intelligence in Industry 4.0 - Systematic Review, Challenges and Outlook," IEEE Access, vol. 8, pp. 220121-220139, 2020.
DOI: 10.1109/ACCESS.2020.3042874.
[3] T. Wang, Y. Zeng, Y. Han, and J. W. Hong, “How does AI Technology Affect the Development of Physical Manufacturing Industry under the Background of Intelligent Economy,” Transactions on economics, business and management research, vol. 3, pp. 217–222, 2023.
DOI: 10.62051/bkm82q24.
[4] L. M. Yahya, S. Suharni, D. R. Hidayat, and A. Y. Vandika, “Application of Artificial Intelligence to Improve Production Process Efficiency in Manufacturing Industry,” West Science Information System and Technology, vol. 2, no. 2, pp. 223–232, 2024.
DOI: 10.58812/wsist.v2i02.1221.
[5] T. Yaşar, “Artificial Intelligence in Business Operations: Exploring How AI Technologies Are Reshaping Processes, Enhancing Decision-Making, and Driving Efficiency Across Various Industries,” Human computer interaction., vol. 8, no. 1, pp. 53, 2024. DOI: 10.62802/r78f9a37.
[6] A. Mondal et al., "Sustainable-resilient-responsive supply chain with demand prediction: An interval type-2 robust programming approach," Engineering Applications of Artificial Intelligence, vol. 133, pp. 108133, 2024.
[7] K. Govindan and R. Sivakumar, "Green supplier selection and order allocation in a low-carbon paper supply chain," Annals of Operations Research, vol. 247, no. 2, pp. 585–607, 2016.
DOI: 10.1007/s10479-015-2004-4.
[8] I. Badi and D. Pamucar, "Supplier selection for steelmaking company by using combined Grey-MARCOS methods," Decision Making: Applications in Management and Engineering, vol. 3, no. 2, pp. 37–48, Oct. 2020.
[9] S. Chakraborty, P. Chatterjee, and D. Pamucar, "An integrated D-MARCOS method for supplier selection in an iron and steel industry," Decision Making: Applications in Management and Engineering, vol. 3, no. 2, pp. 49–69, 2020. DOI: 10.31181/dmame2003049c.
[10] M. Radovanović, S. Jovčić, A. Petrovski, and E. Cirkin, “Evaluation of university professors using the spherical fuzzy AHP and grey MARCOS multi-criteria decision-making model: A case study,” Spectrum of Decision Making and Applications, vol. 2, no. 1, pp. 198–218, 2025, doi: 10.31181/sdmap21202518.
[11] Ž. Stević, D. Pamučar, A. Puška, and P. Chatterjee, "Sustainable supplier selection in healthcare industries using a new MCDM method: Measurement Alternatives and Ranking according to COmpromise Solution (MARCOS)," Computers & Industrial Engineering, vol. 106231, 2020.
DOI: 10.1016/j.cie.2020.106231.
[12] J. Deng, "Introduction to Grey System Theory," The Journal of Grey System, vol. 1, pp. 1–24, 1989.
[13] A. Puška, Ž. Stević, and D. Pamučar, "Evaluation and selection of healthcare waste incinerators using extended sustainability criteria and multi-criteria analysis methods," Environmental Development and Sustainability, vol. 24, no. 9, pp. 11195–11225, 2022, doi: 10.1007/s10668-021-01902-2.
[14] M. Radovanović, S. Jovčić, A. Petrovski, and E. Cirkin, "Evaluation of University Professors Using the Spherical Fuzzy AHP and Grey MARCOS Multi-Criteria Decision-Making Model: A Case Study," Spectrum of Decision Making and Applications, vol. 2, no. 1, pp. 198–218, 2025
DOI: 10.31181/sdmap21202518.
[15] OpenAI, “ChatGPT (GPT-4.o),” [online] Available: https://chat.openai.com/. [Accessed on: Apr. 23, 2025].
[16] K. Patel, “Literature Review on Software Reliable Metrics,” International Journal of Engineering Research & Technology (IJERT) ICRADL, Vol. 09, no. 05, 2021.
[17] T. Yamane, Statistics: An Introductory Analysis, 2nd ed. New York, NY, USA: Harper and Row, 1967.
[18] Y. Wang, L. Shi, M. Song, M. Jia, and B. Li, “Evaluating the energy-exergy-economy-environment performance of the biomass-photovoltaic-hydrogen integrated energy system based on hybrid multi-criterion decision-making model,” Renewable Energy, vol. 224, pp. 120220, 2024.
[19] Y. Gan, C. Zheng, B. Chu, J. Li, Y. Zhang, and Y. Jia, "Research on the risk assessment of the power grid enterprises’ agency power purchase business in China: A hybrid multi-attribute decision-making framework based on FUCOM-F and GRA-MARCOS," Frontiers in Energy Research, vol. 12, pp. 1376531, 2024.
[20] M. Bitarafan, K. A. Hosseini, and S. H. Zolfani, "Identification and assessment of man-made threats to cities using integrated Grey BWM-Grey MARCOS method," Decision Making: Applications in Management and Engineering, vol. 6, no. 2, pp. 581–599, 2023.
DOI: 10.31181/dmame622023747.
[21] P. Nasawat, S. Talangkun, S. Arunyanart, and N. Wichapa, "Hybrid cross-efficiency approach based on ideal and anti-ideal points and the CRITIC method for ranking decision-making units: a case study on ranking the methods of rice weevil disinfestation," Decision Science Letters, vol. 10, no. 3, pp. 375–392, 2021.
[22] สมศักดิ์ ทองแก้ว, ศักดิ์ชัย หงษ์ทอง, ปริวรรต นาสวาสดิ์, ณัฐภัทร กาญจนเรืองรอง, วีระพล ทับทิมดี และ กฤษณะ ช่องศรี, “การประยุกต์ใช้วิธี Fuzzy VIKOR ในการตัดสินใจเลือกแนวทางการพัฒนาผลิตภัณฑ์จากไผ่,” วารสารวิศวกรรมและเทคโนโลยีอุตสาหกรรม มหาวิทยาลัยกาฬสินธุ์, ปีที่ 2, ฉบับที่ 6, หน้า. 34–49, พฤศจิกายน–ธันวาคม 2567.
[23] P. Liu, J. Shen, P. Zhang, and B. Ning, "Multi-attribute group decision-making method using single-valued neutrosophic credibility numbers with fairly variable extended power average operators and GRA-MARCOS," Expert Systems with Applications, vol. 263, pp. 125703, 2025.
DOI: 10.1016/j.eswa.2024.125703.
[24] T. Monmongkol, N. Sriputtha, N. Kanchanaruangrong, and P. Nasawat, "Hybrid GRA-EDAS-based evaluation of electrode materials for automotive spot welding applications," Engineering, Technology & Applied Science Research, vol. 15, no. 4, pp. 25088–25094, 2025, doi: 10.48084/etasr.11871.
[25] ปริวรรต นาสวาสดิ์, มานพ พิพัฒหัตถกุล, และ เษกสรร สิงห์ธนู, "การออกแบบอุปกรณ์ตรวจสอบชิ้นส่วนรถแทรกเตอร์โดยใช้เทคนิคการแปลงหน้าที่เชิงคุณภาพร่วมกับเทคนิควิธีเรียงลำดับแบบอุดมคติ," Journal of Advanced Development in Engineering and Science, ปีที่ 15, ฉบับที่ 42, หน้า 1-20, มกราคม–เมษายน 2568.
[26] S. Phokha, C. Sasen, P. Nasawat, and N. Kanchanaruangrong, "Optimization of Rubber Sheet Rolling Machine Parameters using a Taguchi-based TOPSIS Linear Programming Model," Engineering, Technology & Applied Science Research, vol. 15 , no. 1 , pp. 20508–20516, Jan. 2025.
[27] N. Wichapa, P. Nasawat, N. Kanchanaruangrong, and A. Choompol, "A combined DEAV-BWM approach for effective evaluation and ranking of biomass materials in charcoal briquette production," MethodsX, vol. 13, 103075, pp. 1–11, Nov. 2024.
[28] P. Kailomsom, P. Nasawat, W. Khunthirat, and W. Phuangpornpitak, “A hybrid method based on BWM and TOPSIS-LP model to assess computer numerical control machines,” Engineering Access, vol. 11, no. 1, pp. 108–118, Jan.–Jun. 2025. DOI: 10.1016/j.eswa.2024.125703.
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2025 Journal of Engineering and Industrial Technology, Kalasin University

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
ลิขสิทธิ์ของวารสาร
เนื้อหาและข้อมูลในบทความที่ลงตีพิมพ์ในวารสารศูนย์ดัชนีการอ้างอิงวารสารไทย ถือเป็นข้อคิดเห็นและความรับผิดชอบของผู้เขียนบทความโดยตรงซึ่งกองบรรณาธิการวารสาร ไม่จำเป็นต้องเห็นด้วย หรือร่วมรับผิดชอบใด ๆ
บทความ ข้อมูล เนื้อหา รูปภาพ ฯลฯ ที่ได้รับการตีพิมพ์ในวารสารศูนย์ดัชนีการอ้างอิงวารสารไทย ถือเป็นลิขสิทธิ์ของวารสารศูนย์ดัชนีการอ้างอิงวารสารไทย หากบุคคลหรือหน่วยงานใดต้องการนำทั้งหมดหรือส่วนหนึ่งส่วนใดไปเผยแพร่ต่อหรือเพื่อกระทำการใด จะต้องได้รับอนุญาตเป็นลายลักอักษรจากวารสารศูนย์ดัชนีการอ้างอิงวารสารไทยก่อนเท่านั้น