Integration of Blockchain, Supercapacitors, and Dynamic Reactive Compensation for Smart Load Management in Smart Campus Buildings
DOI:
https://doi.org/10.14456/jeit.2025.21Keywords:
Blockchain, Supercapacitor, Dynamic Reactive Power Compensation, Smart Campus, Smart Load ManagementAbstract
This research aims to design and develop an intelligent load management system for an educational building under the Smart Campus concept. A novel approach is proposed by integrating advanced technologies: Blockchain for transparent data recording, Supercapacitor for rapid energy storage and discharge during peak load conditions, and Dynamic Reactive Compensation (DRC) to stabilize power quality. The system was implemented in the educational building of the College of Industrial Technology, RMUTSV. The developed system represents a groundbreaking innovation by integrating Internet of Things (IoT) and Blockchain technologies for the first time in the context of an educational building to achieve real-time, efficient, and transparent load management. Real-time current data were collected via IoT devices from December 2024 to February 2025. Experimental results comparing the system performance before and after installation showed that the phase load imbalance was reduced from 12.8% to just 3.4%, and the power factor improved from 0.82 to 0.97, leading to a 28.7% reduction in reactive power losses. The Supercapacitor was able to supply up to 11.4 kW within 0.7 seconds, mitigating voltage sag during peak load periods by more than 65%. The Blockchain system recorded load data every second without data loss, with an access latency of less than 0.6 seconds. Overall electrical system efficiency in the building increased from 88.2% to 96.5% within three months. The results demonstrate significant improvements to the building’s electrical system, indicating its potential to be scaled up to a fully intelligent building or Smart Campus in the future.
References
[1] Z. Hu, D. Wang, and Y. Shen, “Reactive power compensation method in modern power system facing energy conversion,” IET Gener., Transm. Distrib., vol. 16, no. 8, pp. 1582–1591, Apr. 2022, doi: 10.1049/gtd2.12374.
[2] H. Chen, T. N. Cong, W. Yang, C. Tan, Y. Li, and Y. Ding, "Progress in electrical energy storage system: A critical review," Progress in Natural Science, vol. 19, no. 3, pp. 291-312, Mar. 2009, doi: 10.1016/j.pnsc.2008.07.014.
[3] F. C. Silva, M. A. Ahmed, J. M. Martinez, and Y.-C. Kim, “Design and Implementation of a Blockchain-Based Energy Trading Platform for Electric Vehicles in Smart Campus Parking Lots,” Energies, vol. 12, no. 24, p. 4814, Jan. 2019, doi: 10.3390/EN12244814.
[4] K. Su, Y. Yu, and J. Zhang, “Blockchain-based smart grid power trading technology,” Journal of Engineering and Applied Science, vol. 71, no. 1, Dec. 2024, doi: 10.1186/s44147-024-00562-z.
[5] M. Zhao, L. Liao, P. Liang, M. Li, Y. Yang, H. Wang, and Z. Zhang, “Energy Blockchain in Smart Communities: Towards Affordable Clean Energy Supply for the Built Environment,” Energy Engineering, 2024. doi: 10.32604/ee.2024.048261.
[6] S. Wang, A. F. Taha, J. Wang, K. Kvaternik, and A. Hahn, “Energy Crowdsourcing and Peer-to-Peer Energy Trading in Blockchain-Enabled Smart Grids,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 49, no. 8, pp. 1612–1623, Jun. 2019, doi: 10.1109/TSMC.2019.2916565.
[7] T. Morstyn, B. Hredzak, and V. G. Agelidis, "Control strategies for microgrids with distributed energy storage systems: An overview," IEEE Transactions on Smart Grid, vol. 9, no. 4, pp. 3652-3666, Jul. 2018, doi: 10.1109/TSG.2016.2637958.
[8] W. Jing, C. H. Lai, W. S. Wong, and M. D. Wong, "Battery-supercapacitor hybrid energy storage system in standalone DC microgrids: A review," IET Renewable Power Generation, vol. 11, no. 4, pp. 461-469, Apr. 2017, doi: 10.1049/iet-rpg.2016.0500.
[9] Y. Han, X. Ning, P. Yang, and L. Xu, "Review of power sharing, voltage restoration and stabilization techniques in hierarchical controlled DC microgrids," IEEE Access, vol. 7, pp. 149202-149223, 2019, doi: 10.1109/ACCESS.2019.2946706.
[10] M. Andoni, V. Robu, D. Flynn, S. Abram, D. Geach, D. Jenkins, P. McCallum, and A. Peacock, "Blockchain technology in the energy sector: A systematic review of challenges and opportunities," Renewable and Sustainable Energy Reviews, vol. 100, pp. 143-174, Feb. 2019, doi: 10.1016/j.rser.2018.10.014.
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2025 Journal of Engineering and Industrial Technology, Kalasin University

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
ลิขสิทธิ์ของวารสาร
เนื้อหาและข้อมูลในบทความที่ลงตีพิมพ์ในวารสารศูนย์ดัชนีการอ้างอิงวารสารไทย ถือเป็นข้อคิดเห็นและความรับผิดชอบของผู้เขียนบทความโดยตรงซึ่งกองบรรณาธิการวารสาร ไม่จำเป็นต้องเห็นด้วย หรือร่วมรับผิดชอบใด ๆ
บทความ ข้อมูล เนื้อหา รูปภาพ ฯลฯ ที่ได้รับการตีพิมพ์ในวารสารศูนย์ดัชนีการอ้างอิงวารสารไทย ถือเป็นลิขสิทธิ์ของวารสารศูนย์ดัชนีการอ้างอิงวารสารไทย หากบุคคลหรือหน่วยงานใดต้องการนำทั้งหมดหรือส่วนหนึ่งส่วนใดไปเผยแพร่ต่อหรือเพื่อกระทำการใด จะต้องได้รับอนุญาตเป็นลายลักอักษรจากวารสารศูนย์ดัชนีการอ้างอิงวารสารไทยก่อนเท่านั้น