Automatic Trash Can with Artificial Intelligence Technology

Authors

  • Wadeenat Wannasawaskul Department of Communication and Information Engineering, Faculty of Industrial Technology, Thepsatri Rajabhat University

DOI:

https://doi.org/10.14456/jeit.2025.6

Keywords:

Waste Bin, Artificial Intelligence, Teachable Machine, ESP32-CAM, Arduino Uno R3

Abstract

This research aims to develop an automated waste bin capable of waste classification using automation and artificial intelligence (AI) technology to enhance waste management efficiency. The system employs an ESP32-CAM as the primary device to capture waste images and transmit data to an AI model developed using a convolutional neural network (CNN) on the Teachable Machine platform. This model classifies waste into four categories: general waste, hazardous waste, organic waste, and recyclable waste. Upon classification, the ESP32-CAM transmits the results to an Arduino Uno R3, which controls the waste sorting mechanism using motors and servo motors. Additionally, an infrared (IR) sensor is installed to monitor the waste bin's status and trigger an alert when the bin is full. The system's performance was evaluated by classifying 50 waste samples per category and assessing four key criteria: (1) classification accuracy, (2) accuracy of the waste container movement, (3) ability to halt operation when the waste bin is full, and (4) LED notification functionality. Experimental results showed that the system achieved a maximum classification accuracy of 99.56% for organic waste due to its distinct characteristics, while general waste had the lowest accuracy of 96.00% due to similarities with certain recyclable waste types. Furthermore, the system demonstrated an accuracy of over 90% in directing the waste container to the correct bin across all categories, with a 100% accuracy in the hazardous waste category. The system also consistently performed stably in alerting when the waste bin was full using the infrared sensor. Overall, the test results indicate that the developed automated waste bin system effectively reduces waste classification errors and significantly improves waste management efficiency.

References

[1] F. Fahmi and B. P. Lubis, "Identification and sorting of waste using artificial intelligence based on convolutional neural network," in Proceedings of the 2022 6th International Conference on Electrical, Telecommunication and Computer Engineering (ELTICOM), 2022, pp. 222–226. DOI: 10.1109/ELTICOM57747.2022.10038044.

[2] B. Fang, et al., "Artificial intelligence for waste management in smart cities: A review," Environmental Chemistry Letters, vol. 21, pp. 1959–1989, 2023. DOI: 10.1007/s10311-023-01604-3.

[3] D. B. Olawade, et al., "Smart waste management: A paradigm shift enabled by artificial intelligence," Waste Management Bulletin, vol. 2, no. 2, pp. 244–263, 2024. DOI: 10.1016/j.wmb.2024.05.001.

[4] J. Son and Y. Ahn, "AI-based plastic waste sorting method utilizing object detection models for enhanced classification," Waste Management, vol. 193, pp. 273–282, 2025. DOI: 10.1016/j.wasman.2024.12.014.

[5] M. Zubair, et al., "Smart Waste Bin: Mechanical and AI Based Waste Segregation," in Proceedings of the 2022 Second International Conference on Artificial Intelligence and Smart Energy (ICAIS), 2022, pp. 63–66. DOI: 10.1109/ICAIS53314.2022.9742806.

[6] ณิชดนีย์ ธัญพรหิรัณย์ และ ชุติธารรัฐ อุตมะสิริเสนี, "การพัฒนาต้นแบบระบบถังขยะไอโอทีและระบบจัดเก็บข้อมูลการทิ้งขยะแบบออนไลน์ของนักเรียนในโรงเรียนระดับประถมศึกษา," วารสารวิทยาศาสตร์และเทคโนโลยี หัวเฉียวเฉลิมพระเกียรติ, ปีที่ 7, ฉบับที่ 1, หน้า 54–63, ม.ค.–มิ.ย. 2565.

[7] ธนโชติ ภาชะนัย และคณะ, "เครื่องคัดแยกขยะรีไซเคิลด้วยการประมวลผลภาพ," วารสารวิชาการเทคโนโลยีอุตสาหกรรมและวิศวกรรม มหาวิทยาลัยราชภัฏพิบูลสงคราม, ปีที่ 4, ฉบับที่ 2, หน้า 242–253, พ.ค.–ส.ค. 2565.

[8] ธานิล ม่วงพูล และ วริยา เย็นเปิง, "การพัฒนาระบบคัดแยกขยะรีไซเคิลด้วยเทคโนโลยีไอโอที," วารสารวิชาการการประยุกต์ใช้เทคโนโลยีสารสนเทศ มหาวิทยาลัยราชภัฏมหาสารคาม, ปีที่ 8, ฉบับที่ 2, หน้า 7–16, ก.ค.–ธ.ค. 2563.

[9] วดีนาถ วรรณสวัสดิ์กุล, "การพัฒนาเว็บแอปพลิเคชันแยกประเภทขยะด้วยเทคโนโลยีปัญญาประดิษฐ์," วารสารวิชาการวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยราชภัฏนครสวรรค์, ปีที่ 16, ฉบับที่ 23, หน้า 51–65, ม.ค.–มิ.ย. 2567.

[10] Recycleye, "Norse Environmental Waste Services invests in AI-powered robotic automation from Recycleye," [online]. Available: https://recycleye.com/news-buys-recycleye-qualibot/. [Accessed: 31 January 2025].

[11] D. Zhaojie, et al., "Garbage Classification System Based on AI and IoT," in Proceedings of the 15th International Conference on Computer Science & Education (ICCSE), Delft, Netherlands, 2020, pp. 349–352.

[12] G. Yang, et al., "Garbage Classification System with YOLOV5 Based on Image Recognition," in Proceedings of IEEE 6th International Conference on Signal and Image Processing (ICSIP), Nanjing, China, 2021, pp. 11–18.

[13] G. Yu and B. Shao, "Garbage Classification and Detection Based on Improved YOLOv7 Network," in Proceedings of International Conference on Pattern Recognition, Machine Vision and Intelligent Algorithms (PRMVIA), Beihai, China, 2023, pp. 103–107.

[14] S. Kunwar, "Garbage Classification," [online]. Available: https://www.kaggle.com/datasets/sumn2u/garbage-classification-v2/data?select=garbage-dataset. [Accessed: 25 January 2025].

[15] X. Yi, Y. Liang and H. Peng, "Garbage classification system based on artificial intelligence and Internet of Things," in Proceedings of International Conference on Artificial Intelligence and Computer Information Technology (AICIT), Yichang, China, 2022, pp. 1–5. DOI: 10.1109/AICIT55386.2022.9930306.

Downloads

Published

2025-04-29

How to Cite

[1]
W. . Wannasawaskul, “Automatic Trash Can with Artificial Intelligence Technology”, JEIT, vol. 3, no. 2, pp. 1–15, Apr. 2025.