Quality of Black-Boned Chicken (Gallus Domesticus) Carcass and Development to Black-Boned Chicken Soup


  • Worrapob Chaisan
  • Sasitorn Baipong Corresponding author


Black-boned chicken, Soup, Functional foods, Carnosine, Anserine, Melanin


Black-boned chickens are one of the native fowl with distinctive characteristics. It was found that it has high protein and low-fat content. Additionally, it had melanin which is a natural antioxidant compound. Chicken soup is a popular functional food that contains carnosine and anserine. These substances are the most prevalent histidine-containing dipeptides not found in plants. Thus, this study aimed to examine the quality of black-boned chicken carcasses and evaluate the biological properties of melanin, carnosine, and anserine were evaluated in various part of black-boned chicken: breast meat, thigh meat, and femur bone as well as the soups derived from each part. The chicken breast meat and its soup contained more carnosine and anserine than the those found thigh meat and femur bone soups (P<0.05). Although, the melanin content showed different amount in raw samples. The chicken soups were not significantly different (P>0.05). The anserine content in chicken muscles were found to be higher compared to that of carnosine. The biological properties of carnosine and anserine extracts from chicken muscle increased proportionally with the amount of these peptides in the muscle. Meanwhile, the femur bone had fewer peptides than the muscle. The femur bone exhibited higher antioxidant activities than the chicken thigh soup, as measured by ABTS and FRAP assays. Hence, the antioxidant activities corresponding with the dipeptides except femur bone.


Ponnarong Prasertsri. (2022). Thailand: Poultry and Products Annual.

Jaturasitha, S., Srikanchai, T., Kreuzer, M., & Wicke, M. (2008). Differences in carcass and meat characteristics between chicken indigenous to northern Thailand (Black-boned and Thai native) and imported extensive breeds (Bresse and Rhode Island red). Poult Sci, 87(1), 160-169. https://doi.org/10.3382/ps.2006-00398

Muroya, S., Tanabe, R.-I., Nakajima, I., & Chikuni, K. (2000). Molecular Characteristics and Site Specific Distribution of the Pigment of the Silky Fowl. The Journal of veterinary medical science / the Japanese Society of Veterinary Science, 62, 391-395. https://doi.org/10.1292/jvms.62.391

Hsieh, P.-H., & Lien, T.-F. (2012). Study of the Physico-chemical Properties and Antioxidant Activity of Extracted Melanins https://www.ccsenet.org/journal/index.php/jas/article/view/17855

Tian, Y., Xie, M., Wang, W., Wu, H., Fu, Z., & Lin, L. (2007). Determination of carnosine in Black-Bone Silky Fowl (Gallus gallus domesticus Brisson) and common chicken by HPLC. European Food Research and Technology, 226, 311-314. https://doi.org/10.1007/s00217-006-0528-1

Jung, S., Bae, Y. S., Kim, H. J., Jayasena, D. D., Lee, J. H., Park, H. B., Heo, K. N., & Jo, C. (2013). Carnosine, anserine, creatine, and inosine 5′-monophosphate contents in breast and thigh meats from 5 lines of Korean native chicken. Poultry Science, 92(12), 3275-3282. https://doi.org/10.3382/ps.2013-03441

Chen, S.-R., Jiang, B., Zheng, J.-X., Xu, G.-Y., Li, J.-Y., & Yang, N. (2008). Isolation and characterization of natural melanin derived from silky fowl (Gallus gallus domesticus Brisson). Food Chemistry, 111(3), 745-749. https://doi.org/10.1016/j.foodchem.2008.04.053

Tadesse, S. A., & Emire, S. A. (2020). Production and processing of antioxidant bioactive peptides: A driving force for the functional food market. Heliyon, 6(8), e04765-e04765. https://doi.org/10.1016/j.heliyon.2020.e04765

Monica, B., & Ioan, S. (2019). Functional Food. International Journal of Nutrition, 3(3), 7-16. https://doi.org/10.14302/issn.2379-7835.ijn-19-2615

Martini, S., Solieri, L., & Tagliazucchi, D. (2021). Peptidomics: new trends in food science. In (Vol. 39, pp. 51-59): Elsevier Ltd.

Jaturasitha, S., Chaiwang, N., & Kreuzer, M. (2016). Thai native chicken meat: an option to meet the demands for specific meat quality by certain groups of consumers; a review. Animal Production Science, 57. https://doi.org/10.1071/AN15646

Chan, L., Wang, H.-M., Chen, K.-Y., Lin, Y.-C., Wu, P.-J., Hsieh, W.-L., Chen, Y.-R., Liu, C.-P., Tsai, H.-Y., Chen, Y.-R., Chang, H.-H., Hsieh, Y.-C., & Hu, C.-J. (2016). Effectiveness of Essence of Chicken in Improving Cognitive Function in Young People Under Work-Related Stress: A Randomized Double-Blind Trial. Medicine, 95(19). https://doi.org/10.1097/MD.0000000000003640

Li, Y. F., He, R. R., Tsoi, B., & Kurihara, H. (2012). Bioactivities of Chicken Essence. Journal of Food Science, 77(4), R105-R110. https://doi.org/10.1111/j.1750-3841.2012.02625.x

Yamano, E., Tanaka, M., Ishii, A., Tsuruoka, N., Abe, K., & Watanabe, Y. (2013). Effects of chicken essence on recovery from mental fatigue in healthy males https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3707410/

Lü, Y. Q., He, R. R., Watanabe, H., Abe, K., Sakurai, E., Yanai, K., & Kurihara, H. (2010). Effects of a chicken extract on food-deprived activity stress in rats. Biosci Biotechnol Biochem, 74(6), 1276-1278. https://doi.org/10.1271/bbb.90950

Konagai, C., Watanabe, H., Abe, K., Tsuruoka, N., & Koga, Y. (2013). Effects of Essence of Chicken on Cognitive Brain Function: A Near-Infrared Spectroscopy Study. Bioscience, biotechnology, and biochemistry, 77. https://doi.org/10.1271/bbb.120706

Dong, Z. Y., Li, M. Y., Tian, G., Zhang, T. H., Ren, H., & Quek, S. Y. (2019). Effects of ultrasonic pretreatment on the structure and functionality of chicken bone protein prepared by enzymatic method. Food Chemistry, 299, 125103-125103. https://doi.org/10.1016/j.foodchem.2019.125103

AOAC. (2000). Official methods of analysis of AOAC International (17th ed.). AOAC International.

Mora, L., Sentandreu, M. A., & Toldrá, F. (2007). Hydrophilic chromatographic determination of carnosine, anserine, balenine, creatine, and creatinine. J Agric Food Chem, 55(12), 4664-4669. https://doi.org/10.1021/jf0703809

Lin, L.-C., & Chen, W.-T. (2005). The Study of Antioxidant Effects in Melanins Extracted from Various Tissues of Animals. Asian-Australasian Journal of Animal Sciences, 18. https://doi.org/10.5713/ajas.2005.277

Tanzadehpanah, H., Asoodeh, A., & Chamani, J. (2012). An antioxidant peptide derived from Ostrich (Struthio camelus) egg white protein hydrolysates. Food Research International, 49, 105–111. https://doi.org/10.1016/j.foodres.2012.08.022

Benzie, I. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Anal Biochem, 239(1), 70-76. https://doi.org/10.1006/abio.1996.0292

Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med, 26(9-10), 1231-1237. https://doi.org/10.1016/s0891-5849(98)00315-3

Cansu, Ü., & Boran, G. (2015). Optimization of a Multi-Step Procedure for Isolation of Chicken Bone Collagen. Korean J Food Sci Anim Resour, 35(4), 431-440. https://doi.org/10.5851/kosfa.2015.35.4.431

Barido, F. H., Lee, C. W., Park, Y. S., Kim, D. Y., & Lee, S. K. (2021). The effect of a finishing diet supplemented with γ-aminobutyric acids on carcass characteristics and meat quality of Hanwoo steers. Anim Biosci, 34(4), 621-632. https://doi.org/10.5713/ajas.20.0224

Lawrie, R. A., & Ledward, D. (2014). Lawrie’s meat science. Woodhead Publishing.

Listrat, A., Lebret, B., Louveau, I., Astruc, T., Bonnet, M., Lefaucheur, L., Picard, B., & Bugeon, J. (2016). How Muscle Structure and Composition Influence Meat and Flesh Quality. ScientificWorldJournal, 2016, 3182746. https://doi.org/10.1155/2016/3182746

Ionescu, R. E., Fillit, C., Jaffrezic-Renault, N., & Cosnier, S. (2008). Urease–gelatin interdigitated microelectrodes for the conductometric determination of protease activity. Biosensors and Bioelectronics, 24(3), 489-492. https://doi.org/10.1016/j.bios.2008.06.021

Bee, S.-L., & Hamid, Z. A. A. (2019). Characterization of chicken bone waste-derived hydroxyapatite and its functionality on chitosan membrane for guided bone regeneration. Composites Part B: Engineering, 163, 562-573. https://doi.org/10.1016/j.compositesb.2019.01.036

Lesiów, T. (2000). Gelation of chicken breast and thigh muscle homogenates: Effect of pH and time of aging. Food / Nahrung, 44(6), 426-430. https://doi.org/10.1002/1521-3803(20001201)44:6<426::AID-FOOD426>3.0.CO;2-Y

Soeparno. (2009). Ilmu dan Teknologi Daging (2 ed.).

Jaturasitha, S. (2012). Meat Technology. Mingmuang Press.

Barido, F. H., Kang, S. M., & Lee, S. K. (2022). The Quality and Functional Improvement of Retorted Korean Ginseng Chicken Soup (Samgyetang) by Enzymolysis Pre-Treatment with Cordyceps militaris Mushroom Extract. Foods, 11(3), 422. https://doi.org/10.3390/foods11030422

Paião, F. G., Ferracin, L. M., Pedrão, M., Kato, T., & Shimokomaki, M. (2013). Skeletal muscle calcium channel ryanodine and the development of pale, soft, and exudative meat in poultry. Genet Mol Res, 12(3), 3017-3027. https://doi.org/10.4238/2013.August.20.3

Ang, S. S., & Ismail-Fitry, M. R. (2019). Production of Different Mushroom Protein Hydrolysates as Potential Flavourings in Chicken Soup Using Stem Bromelain Hydrolysis. Food Technol Biotechnol, 57(4), 472-480. https://doi.org/10.17113/ftb.

Li, Q., Liu, J., De Gobba, C., Zhang, L., Bredie, W. L. P., & Lametsch, R. (2020). Production of Taste Enhancers from Protein Hydrolysates of Porcine Hemoglobin and Meat Using Bacillus amyloliquefaciens γ-Glutamyltranspeptidase. Journal of Agricultural and Food Chemistry, 68(42), 11782-11789. https://doi.org/10.1021/acs.jafc.0c04513

Kojima, S., Saegusa, H., & Sakata, M. (2014). Histidine-Containing Dipeptide Concentration and Antioxidant Effects of Meat Extracts from Silky Fowl: Comparison with Meat-Type Chicken Breast and Thigh Meats. Food Science and Technology Research, 20(3), 621-628. https://doi.org/10.3136/fstr.20.621

Peiretti, P. G., Medana, C., Visentin, S., Giancotti, V., Zunino, V., & Meineri, G. (2011). Determination of carnosine, anserine, homocarnosine, pentosidine and thiobarbituric acid reactive substances contents in meat from different animal species. Food Chem, 126(4), 1939-1947. https://doi.org/10.1016/j.foodchem.2010.12.036

Peiretti, P. G., Medana, C., Visentin, S., Dal Bello, F., & Meineri, G. (2012). Effect of cooking method on carnosine and its homologues, pentosidine and thiobarbituric acid-reactive substance contents in beef and turkey meat. Food Chemistry, 132(1), 80-85. https://doi.org/10.1016/j.foodchem.2011.10.035

Ustunol, Z. (2014). Physical, Chemical, and Processing-Induced Changes in Proteins. In Applied Food Protein Chemistry (pp. 23-46). https://doi.org/10.1002/9781118860588.ch4

Chan, K. M., & Decker, E. A. (1994). Endogenous skeletal muscle antioxidants. Crit Rev Food Sci Nutr, 34(4), 403-426. https://doi.org/10.1080/10408399409527669

Stegen, S., Everaert, I., Deldicque, L., Vallova, S., de Courten, B., Ukropcova, B., Ukropec, J., & Derave, W. (2015). Muscle histidine-containing dipeptides are elevated by glucose intolerance in both rodents and men. PLoS One, 10(3), e0121062. https://doi.org/10.1371/journal.pone.0121062

Xin, C., Ma, J. H., Tan, C. J., Yang, Z., Ye, F., Long, C., Ye, S., & Hou, D. B. (2015). Preparation of melanin from Catharsius molossus L. and preliminary study on its chemical structure. J Biosci Bioeng, 119(4), 446-454. https://doi.org/10.1016/j.jbiosc.2014.09.009

Sawhney, S. S. (1994). Thermal stability of melanin. Thermochimica Acta, 247(2), 377-380.

Serpen, A., Gökmen, V., & Fogliano, V. (2012). Total antioxidant capacities of raw and cooked meats. Meat Sci, 90(1), 60-65. https://doi.org/10.1016/j.meatsci.2011.05.027

Chen, H.-M., Muramoto, K., Yamauchi, F., & Nokihara, K. (1996). Antioxidant Activity of Designed Peptides Based on the Antioxidative Peptide Isolated from Digests of a Soybean Protein. Journal of Agricultural and Food Chemistry, 44(9), 2619-2623. https://doi.org/10.1021/jf950833m

Chen, H. M., Muramoto, K., Yamauchi, F., Fujimoto, K., & Nokihara, K. (1998). Antioxidative Properties of Histidine-Containing Peptides Designed from Peptide Fragments Found in the Digests of a Soybean Protein. J Agric Food Chem, 46(1), 49-53. https://doi.org/10.1021/jf970649w

Theodore, A. E., Raghavan, S., & Kristinsson, H. G. (2008). Antioxidative activity of protein hydrolysates prepared from alkaline-aided channel catfish protein isolates. J Agric Food Chem, 56(16), 7459-7466. https://doi.org/10.1021/jf800185f

Gu, F.-L., Kim, J. M., Abbas, S., Zhang, X.-M., Xia, S.-Q., & Chen, Z.-X. (2010). Structure and antioxidant activity of high molecular weight Maillard reaction products from casein–glucose. Food Chemistry, 120(2), 505-511. https://doi.org/10.1016/j.foodchem.2009.10.044

Hwang, I. G., Kim, H. Y., Woo, K. S., Lee, J., & Jeong, H. S. (2011). Biological activities of Maillard reaction products (MRPs) in a sugar–amino acid model system. Food Chemistry, 126(1), 221-227. https://doi.org/10.1016/j.foodchem.2010.10.103

Carnosine and anserine contents in a) black-boned chicken parts and b) black-boned chicken soups, a small letter in each column indicates a significant difference in chicken type (P<0.05), and *, ** indicates a significant difference in each sample type (P<0.05).