Food Safety Blockchain Technology for Monitoring the CCPs in UHT Milk Production
คำสำคัญ:
Food Safety, Risk Assessment, Blockchain Technology, Milk Productบทคัดย่อ
Food safety management systems increasingly utilize blockchain technology for verification and archival purposes. In the domain of milk production, the application of this technology offers an efficient approach to mitigate risk threats. This study aimed to develop a food safety blockchain for UHT milk production by incorporating HACCP-compatible risk assessments to identify risk parameters and mitigate microbial hazards. Over a year, it was found that 86.25% of a population of 1,000,000 consumed UHT milk. The Exponential and Modified Beta Poisson Models predicted potential illnesses caused by E. coli and S. aureus to be 1.02E+01 and 2.99E-01, and 3.59E-03 and 5.47E-04 persons per year, per 1,000,000 people, respectively. Using the recorded data, a functional blockchain technology system was created for the UHT milk supply chain. This novel blockchain system, the latest in Thailand, offers an alternative for enhancing food safety in various production sectors.
References
En, A., Donia, M., Abd-Rabou, N., Abou-Arab, A., & El-Senait, M. (2009). Chemical Composition of Raw Milk and Heavy Metals Behavior During Processing of Milk Products. Global Veterinaria, 3.
Raljić, J., Lakić, N., Lalicic, J., Barac, M., & Sikimic, M. (2008). Color Changes of UHT Milk During Storage. Sensors, 8, 5961-5974. https://doi.org/10.3390/s8095961
Datta, N., & Deeth, H. (2007). UHT and Aseptic Processing of Milk and Milk Products. Advances in Thermal and Non-Thermal Food Preservation. https://doi.org/10.1002/9780470277898.ch4
Food & Agriculture Organization. (1997). Codex alimentarius. Food hygiene basic texts. Hazard analysis and critical control point (HACCP) system and guidelines for its application, 38-44.
Demestichas, K., Peppes, N., Alexakis, T., & Adamopoulou, E. (2020). Blockchain in Agriculture Traceability Systems: A Review. Applied Sciences, 10, 4113. https://doi.org/10.3390/app10124113
Kamble, S., Gunasekaran, A., & Gawankar, S. (2019). Achieving Sustainable Performance in a Data-driven Agriculture Supply Chain: A Review for Research and Applications. International Journal of Production Economics, 219, 179-194. https://doi.org/10.1016/j.ijpe.2019.05.022
Pohlmann, C., Scavarda, A., Alves, M., & Korzenowski, A. (2019). The role of the focal company in sustainable development goals: A Brazilian food poultry supply chain case study. Journal of Cleaner Production, 245, 118798. https://doi.org/10.1016/j.jclepro.2019.118798
Charlebois, S., & Haratifar, S. (2015). The perceived value of dairy product traceability in modern society: An exploratory study. Journal of Dairy Science, 98, 3514–3525. https://doi.org/10.3168/jds.2014-9247
Kayikci, Y., Subramanian, N., Dora, M., & Bhatia, M. (2020). Food supply chain in the era of Industry 4.0: Blockchain technology implementation opportunities and impediments from the perspective of people, process, performance and technology. Production Planning and Control, 1-21. https://doi.org/10.1080/09537287.2020.1810757
Tan, A., & Phạm Thi, N. (2020). A Proposed Framework model for dairy supply chain traceability. Sustainable Futures, 2, 100034. https://doi.org/10.1016/j.sftr.2020.100034
Casino, F., Kanakaris, V., Dasaklis, T., Moschuris, S., Stachtiaris, S., Pagoni, M., & Rachaniotis, N. (2020). Blockchain-based food supply chain traceability: a case study in the dairy sector. International Journal of Production Research, 59, 1-13. https://doi.org/10.1080/00207543.2020.1789238
Pfm, T., der, H., der, G., & Havelaar, A. (1996). The dose-response relation in human volunteers for gastro-intestinal pathogens.
Teunis, P. F. M., Nagelkerke, N. J. D., & Haas, C. N. (1999). Dose Response Models For Infectious Gastroenteritis [https://doi.org/10.1111/j.1539-6924.1999.tb01143.x]. Risk Analysis, 19(6), 1251-1260. https://doi.org/https://doi.org/10.1111/j.1539-6924.1999.tb01143.x
Vose, D. (2008). Risk Analysis – A Quantitative Guide.
Buchanan, D., Claydon, T., & Doyle, M. (1999). Organisation development and change: the legacy of the nineties. Human Resource Management Journal, 9(2), 20-37. https://doi.org/https://doi.org/10.1111/j.1748-8583.1999.tb00194.x
Furumoto, W. A., & Mickey, R. (1967). A mathematical model for the infectivity-dilution curve of tobacco mosaic virus: Theoretical considerations. Virology, 32(2), 216-223. https://doi.org/https://doi.org/10.1016/0042-6822(67)90271-1
Haas, C. N. (1983). Estimation of risk due to low doses of microorganisms: a comparison of alternative methodologies. Am J Epidemiol, 118(4), 573-582. https://doi.org/10.1093/oxfordjournals.aje.a113662
Haas, C. (2003). Dose-Response Modeling for Microbial Risk. In Food Safety Handbook (pp. 47-57). https://doi.org/https://doi.org/10.1002/047172159X.ch4
Yermack, D. (2017). Corporate Governance and Blockchains*. Review of Finance, 21(1), 7-31. https://doi.org/10.1093/rof/rfw074
FAO/WHO, (2010). FAO/WHO expert meeting on the application of nanotechnologies in the food and agricultural sectors: Potential food safety implications-meeting report Rome (2010), pp. 24-42
Kusumaningrum, H., Riboldi, G., Hazeleger, W. C., & Beumer, R. (2003). Survival of pathogens on stainless steel surfaces and cross-contamination to foods. International journal of food microbiology, 85, 227-236. https://doi.org/10.1016/S0168-1605(02)00540-8
Gale, P. (2001). Developments in microbiological risk assessment for drinking water. Journal of Applied Microbiology, 91(2), 191-205. https://doi.org/https://doi.org/10.1046/j.1365-2672.2001.01421.x
Cornick, N. A., & Helgerson, A. (2004). Transmission and Infectious Dose of Escherichia coli O157:H7 in Swine. Applied and environmental microbiology, 70, 5331-5335. https://doi.org/10.1128/AEM.70.9.5331-5335.2004
DuPont, H. L., Formal, S. B., Hornick, R. B., Snyder, M. J., Libonati, J. P., Sheahan, D. G., LaBrec, E. H., & Kalas, J. P. (1971). Pathogenesis of Escherichia coli Diarrhea. New England Journal of Medicine, 285(1), 1-9. https://doi.org/10.1056/nejm197107012850101
Haas, C. N., Rose, J. B. & Gerba, C. P. (1999). Quantitative Microbial Risk Assessment. John Wiley& Sons, New York.
Datta, N., Elliott, A. J., Perkins, M. L., & Deeth, H. C. (2002). Ultra-High-Temperature (UHT) Treatment of Milk: Comparison of Direct and Indirect Modes of Heating. The Australian Journal of Dairy Technology. 57 (3): 211-227.
Westhoff, D. C. (1981). Microbiology of Ultrahigh Temperature Milk. J. Dairy Sci. 64 (1): 167-173.
Overman, E. M. (1998). Aseptic Packaging and Shelf Stability of Foods. M.S. Report. Kansas State University.
Bryan, F. L. (1983). Epidemiology of milk borne diseases J. Food Prot. 46.637-649.
Padhye, N, V. & Doyle, M . P. (1991). Escherichia coli epidemiology pathogenesis and methods for detection in food .J. prot., 55(7):555- 556.
Salman , A. & Hamad, I. M. (2011). Enumeration and identification of coliform bacteria from raw milk in Khartoum State, Sudan. Journal of Cell and Animal Biology Vol. 5(7), 121-128.
SSMO (2007). Sudanese Standards and Metrology Organization. Sudanese standards for pasteurized milk No(189).
Elmagli, A. A. O. & Elzubeir, I. E. M. (2006). Astudy on the compositional quality of pasteurized milk in Khartoum State (Sudan). International journal of dairy science, 1 (1):12-20.
László,V. (2003). Microbiological quality of commercial dairy products. In: A. Mendez-Vilas (Ed). Communicating Current Research and Educational Topics and Trends in Applied Microbiology.
Kassem, M., Salem, E., Ahwal, A., Saddik, M., & Gomaa, N. (2002). Application of hazard analysis and critical control point system in the dairy industry. Eastern Mediterranean health journal = La revue de santé de la Méditerranée orientale = al-Majallah al-sihhiyah li-sharq al-mutawassit, 8, 114-128. https://doi.org/10.26719/2002.8.1.114
Dumalisile, P.; Withuhn, R. & Jbritz, T.(2005). Impact of different pasteurization temperatures on the survival of microbial contamination isolated from pasteurized milk. International Journal of Dairy Technology, 58(2):74-82.
Gale, P., Developments in microbiological risk assessment for drinking water. Journal of Applied Microbiology, 2001. 91(2): p. 191-205.
Awosile, B. B. & B. A. Smith (2017). "Risk assessment modelling of fecal shedding caused by extended-spectrum cephalosporin-resistant Escherichia coli transmitted through waste milk fed to dairy pre-weaned calves." Journal of Dairy Science 100(12): 9667-9673.
Kamath, R. (2018). Food traceability on blockchain: Walmart’s pork and mango pilots with IBM. The Journal of the British Blockchain Association 1 (1), 3712.
Lin, J., et al., (2018). Blockchain and IoT based food traceability for smart agriculture. Proceedings of the 3rd International Conference on Crowd Science and Engineering.
Tripoli, M. & Schmidhuber, J. (2018). Emerging Opportunities for the Application of Blockchain in the Agri-food Industry.
Downloads
เผยแพร่แล้ว
ฉบับ
บท
License
Copyright (c) 2023 วารสาร มรภ.กพ. วิทยาศาสตร์ คณิตศาสตร์ และเทคโนโลยี
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
บทความที่ได้รับการตีพิมพ์เป็นลิขสิทธิ์ของวารสาร มรภ.กพ. วิทยาศาสตร์ คณิตศาสตร์ และเทคโนโลยี
ข้อคิดเห็นใดๆ ที่ปรากฎในวารสารเป็นวรรณกรรมของผู้เขียนโดยเฉพาะ ซึ่งมหาวิทยาลัยราชภัฏกำแพงเพชรและบรรณาธิการไม่จำเป็นต้องเห็นด้วย