The Application of Saving Algorithms for Scheduling Vehicle Routing

Main Article Content

ณราวดี สิทธิเดชธำรง

Abstract

The purpose of this research is to use the saving algorithm to organize the appropriate cargo routes and reduce fuel costs of transportation from the data analysis, it was found that the case study company did not have an efficient freight routing system. Therefore, the researcher improved the freight routing by applying a saving algorithm. Therefore, the researcher improved the freight routing by applying a saving algorithm. The steps are divided into four parts, as follows: 1. Creating a distance matrix 2. Creating a saving matrix 3. Ranking of economical distance values. Finally, arrange the customers in order of their route. The result of the improvement of transport vehicle 1before improvement by 1,752 kilometers after improvement by 1,371 kilometers, decreased 21.75%. Fuel cost before improvement 11,879 baht/round after improvement 9,401.38baht/round, decreased 20.86%. Transport vehicle 2distance before improvement 1,375 kilometers after improvement 1,341kilometers, decreased 2.47%. Fuel cost before improvement 10,521.40baht/round after adjusting 10,249.88 baht/round, decreased 2.58%. Transport vehicle 3 distance before improvement 1,461 kilometers. After improvement 1,190.50 kilometers, decreased 18.55%. Fuel cost before improvement 10,691.10 baht/round after adjusting 8,722.58 baht/round, decreased 18.41%. 

Article Details

How to Cite
1.
สิทธิเดชธำรง ณ. The Application of Saving Algorithms for Scheduling Vehicle Routing . J. Techno. Eng. Prog. [internet]. 2023 Dec. 26 [cited 2026 Jan. 15];1(1):51-60. available from: https://ph03.tci-thaijo.org/index.php/JTEP/article/view/938
Section
Research article

References

แนวโน้มธุรกิจ/อุตสาหกรรมปี (2565-2567). ธุรกิจบริการขนส่งสินค้าทางถนน [Online]. Available: https://www.krungsri.com/th/research/industry/industry-outlook/logistics/road-freight-transportation/IO/road-freight-transportation-2022-2024

รศ.รัชต์วรรณ กาญจนปัญญาคม, การศึกษางานอุตสาหกรรม, ฉบับปรังปรุงใหม่, บริษัท สำนักพิมพ์ท้อป จำกัด, 2562.

Nazari, M., Oroojlooy, A., Snyder, L., & Takác, M., “Reinforcement learning for solving the vehicle routing problem,” 32nd Conference on Advances in Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

Clarke, Geoff; Wright, John W, “Scheduling of vehicles from a central depot to a number of delivery points,”Operations research, Vol 12(4), 1964, pp. 568-581.

วิไลวรรณ์ แก่นสาร และ สมบัติ สินธุเชาน์, “การเปรียบเทียบวิธีการฮิวริสติกส์สําหรับระบบการจัดการขยะ,” วารสารวิชาการ Thai VCML. ปีที่ 6 ฉบับที่ 2 (2559) กรกฎาคม - ธันวาคม 2559.

Dantzig, G. B., & Ramser, J. H, “The truck dispatching problem,” Management science, Vol6(1), 1959, pp. 80-91.

Pichpibul, T., & Kawtummachai, R, “An improved Clarke and Wright savings algorithm for the capacitated vehicle routing problem,” Science Asia, Vol38(3), 2012, pp. 307-318.

จารุพงษ์ บรรเทา, นันทพัทธ์ สันติชูวงศ์, วีระชัย ตาลกลาง, “Solving a Vehicle Routing Problem with Time Window by Heuristics Method: A Case Study of Automotive Part Manufacturer,” วารสารวิจัยมทร. กรุงเทพ, ปีที่ 10(2), 2016, pp. 31-42.

Rawirod Pongsub, “Vehicle Routing Arrangement for Automotive Parts: A Case Study Of Automotive Parts Transport Company” Burapha University 2021.