Production of Pulp from Pineapple Leaf Fiber for Conductive Paper

Main Article Content

Siritorn Yaisoong
Suthida Ambangkrathum
Boonchai Duangsawat
Ataya Santakul
Suphot Srathonglang
Chutima Oopathump
Aphichard Phongphala

Abstract

Objective of this research is to study the suitable method for making conductive paper from pineapple leaf fibers. Firstly, the suitable solvent was considered between tab water and limewater. Next, boiled times was also study, 2, 4 and 6 hours, respectively. It was found that the suitable solvent was limewater it took 6 hours. Picture form Microscope and paper weight indicated the characteristics of pineapple leaf paper. Surface paper showed uniform pulp distribution sufficient adhesion and pulp density. After that, the paper quality was tested such as the weight of paper was 3.77±0.02 g, the contact angle was 104.30±0.00 degrees, the elasticity of paper 1.6x106 N/m2 and the opacity of the paper was 9.40±0.01 lux. Which suitable qualification are applied in making basic conductive paper. Conductivity of sample was measured from paper mixed with carbon nanotubes concentration at 2%, 3%, 4%, 5% w/w. These values ​​are as follows: 2.50x10-5 ohms, 2.94x10-4 ohms, 4.05x10-4 ohms, and 2.06x10-3 ohms. The result indicated that conductivity of paper vary with carbon nanotube concentration.

Article Details

How to Cite
1.
Yaisoong S, Ambangkrathum S, Duangsawat B, Santakul A, Srathonglang S, Oopathump C, Phongphala A. Production of Pulp from Pineapple Leaf Fiber for Conductive Paper. J. Techno. Eng. Prog. [internet]. 2025 Dec. 30 [cited 2025 Dec. 30];3(2):28-3. available from: https://ph03.tci-thaijo.org/index.php/JTEP/article/view/4302
Section
Research article

References

วรภัทร ลัคนทินวงศ์. (2546). กระดาษจากใบของสับปะรดและอุตสาหกรรมของครัวเรือน. ใน การประชุมวิชาการพืชสวนแห่งชาติ ครั้งที่ 3 (หน้า 221).

วีระ โชติธรรมาภรณ. (2566). การผลิตกระดาษหัตถกรรมจากเยื่อใบสับปะรด เยื่อฟางข้าวและเยื่อกาบกล้วยและการเคลือบด้วยสารไคโตซาน. ก้าวทันโลกวิทยาศาสตร์, 23, 1–12.

Aguilar, J., Bautista-Quijano, J., & Avilés, F. (2010). Influence of carbon nanotube clustering on the electrical conductivity of polymer composite films. Express Polymer Letters, 4, 292–299.

Abd Razak, S. I., Ahmad Sharif, N. F., & Mat Nayan, N. H. (2014). Electrically conductive paper of polyaniline-modified pineapple leaf fiber. Fibers and Polymers, 15, 1107–1111. https://doi.org/10.1007/s12221-014-1107-0

Anderson, R. E., Guan, J., Ricard, M., et al. (2010). Multifunctional single-walled carbon nanotube–cellulose composite paper. Journal of Materials Chemistry, 20, 2400–2407. https://doi.org/10.1039/B924497H

Bauhofer, W., & Kovacs, J. (2009). A review and analysis of electrical percolation in carbon nanotube polymer composites. Composites Science and Technology, 69, 1486–1498.

Boonthum, D., Oopathump, C., Pakdee, U., & others. (2022). Screen-printing of functionalized MWCNT–PEDOT:PSS based solution on bendable substrate for ammonia gas sensing. Micromachines, 13(3), 462.

Bunshi, F., Eiichi, S., Masaki, S., & others. (2008). Electrical conductivity and electromagnetic interference shielding of nanotubes/celluloses composite papers. Carbon, 46, 1256–1258.

Jutarut, I., Piyaporn, K., Yutthawee, W., & others. (2020). Biodegradable plates made of pineapple leaf pulp with biocoatings to improve water resistance. Journal of Materials Research and Technology, 9, 5055–5066.

Kim, D.-H., Cho, Y.-I., Choi, J. H., et al. (2015). Conductive carbon nanotube paper by recycling waste paper. RSC Advances, 5(40), 32118–32123. https://doi.org/10.1039/C5RA03312F

Park, S., Song, Y., Ryu, B., Song, Y.-W., Lee, H., Kim, Y., Lim, J., Lee, D., Yoon, H., Lee, C., & Yun, C. (2024). Highly conductive ink based on self‑aligned single‑walled carbon nanotubes through inter‑fiber sliding in cellulose fibril networks. Advanced Science, 11(40), Article 2402854. https://doi.org/10.1002/advs.202402854

Selvam, K. P., Nagahata, T., Kato, K., et al. (2020). Synthesis and characterization of conductive flexible cellulose carbon nanohorn sheets for human tissue applications. Biomaterials Research, 24, 18. https://doi.org/10.1186/s40824-020-00192-x

Thaibunnak, A., & Pakdee, U. (2022). Pen-based writing of functionalized MWCNT–PEDOT:PSS ink on flexible substrate for application in ammonia gas sensor. Suranaree Journal of Science and Technology, 29(2), 010119 (1–7).

Udomdej, P., & Anaya, T. (2019). Growth of MWCNTs on plasma ion-bombarded thin gold films and their enhancements of ammonia-sensing properties using inkjet printing. Journal of Nanotechnology, 2019, 1–11. https://doi.org/10.1155/2019/3424915