Estimates of Genetic Variation, Genetic Advance and Heritability in S1 line Population of Waxy Corn

Main Article Content

Nuttida Inpik
Chanate Malumpong
Buppa Kongsamai

Abstract

The study aimed to assess genetic variation in agricultural characteristics, fresh-ear yield, and eating quality of S1 lines population of waxy corn, which is in the cycle 3 of recurrent selection. The 288 lines were split into 2 sets, 141 lines each. Three commercial varieties (SW254, Sweet White, and Big White) were used as check. The experiment was conducted using alpha-lattice design (12x12) with 2 replications at the experimental plot of Kasetsart University, Kamphaeng Saen Campus from June to October 2021. It showed statistically significant differences for green and white weight, ear length and number of kernel rows. Estimates of GCV and PCV ranged between 5.6% and 28.9%. The highest GCV and PCV value were found particularly for green and white weight and ear height with moderate heritability values were also found for both traits and their genetic advance over mean (GAM) was ranged 8.0-19.0%. Means of fresh-ear yield and ear length of the selected S1 lines trends to be better than that of population and check mean. It indicates that existence of genetic variation in the population should be exploited in future breeding for fresh-ear yield.

Article Details

Section
Plant Sciences

References

ชูศักดิ์ จอมพุก. (2555). สถิติ : การวางแผนการทดลองและการวิเคราะห์ข้อมูลในงานวิจัยด้านพืชด้วย "R" (พิมพ์ครั้งที่ 2). สำนักพิมพ์มหาวิทยาลัยเกษตรศาสตร์.

สำนักควบคุมพืชและวัสดุการเกษตร กรมวิชาการเกษตร. (2565). ข้อมูลสถิติ. https://www.doa.go.th/ard/?page_id=85

Abe, A. & Adelegan, C.A. (2019.Genetic variability, heritability and genetic advance in shrunken-2 super-sweet corn (Zea mays L.saccharata) populations. Journal of Plant Breeding and Crop Science, 11(4), 100-105. https://doi.org/10.5897/JPBCS2018.0799

Ahsan, M.Z., Majidano, M.S., Bhutto, H., Soomro, A.W., Panhwar, F.H., Channa, A.R. & Sial, K.B. (2015). Genetic variability, coefficient of variance, heritability and genetic advance of some Gossypium hirsutum L. accessions. Journal of Agricultural Science, 7(2), 147-151. https://doi.org/ 10.5539/jas.v7n2p147

Burton, G.W. & Devane. E.H. (1953). Estimating The heritability in tall fescue (Festuca Arundinancea) from replicated clonal material. Agronomy Journal, 45(10), 478-481. https://doi.org/10.2134/agronj1953.00021962004500100005x

Chander, S., Meng. Y., Zhang. Y., Yan. J. & Li. J. (2008). Comparison of nutritional traits variability in selected eighty-seven inbreds from chinese maize (Zea Mays L.) germplasm. Journal of Agricultural and Food Chemistry, 56, 6506-6511. https://doi.org/10.1021/jf7037967

Coe, E.H., Neuffer, M.G. & Hoisington, D.A. (1988) The genetics of corn. In G.F. Sprague & J.W. Dudley (Eds.). Corn and Corn Improvement. (pp. 81–258). Wisconsin: Madison.

Ferh, W.R. (1991). Principles of cultivar development: Theory and technique (2nd ed.). Macmillan Publishing.

Halluaer, A.R. & Mirinda, J.N. (1995). Quantitative genetics in maize breeding (2nd ed.). Iowa State University Press.

Hanyu, Y. (2012). Characterization of normal and waxy corn starch for bioethanol production. [Master’s Thesis, Iowa State University]. Iowa State University Digital Repository https://dr.lib.iastate.edu/server/api/core/bitstreams/a4d91338-4923-4157-92a6-ec92032c5da8/content

Hossain, M., Azad A.K., Alam S. & Eaton, T. El-J. (2021). Estimation of variability, heritability and genetic advance for phenological and yield contributing attributes in wheat genotypes under heat stress condition. American Journal of Plant Science, 12, 586-302 https://doi.org/10.4236/ajps.2021.124039

International Rice Research Institute. (2014). Statistical Tool for Agricultural Research STAR (Version 2.0.1). [Computer software]. International Rice Research Institute. http://bbi.irri.org/products

Jilo, T., Tulu, L., Birhan, T. & Beksisa, L. (2018). Genetic variability, heritability and genetic advance of maize (Zea Mays L.) inbred lines for yield and yield related traits In Southwestern Ethiopia. Journal Plant Breeding and Crop Science, 10(10), 281-289. https://doi.org/10.5897/JPBCS2018.0742

Johnson, H.W., Robinson, H.F. & Comstock, R.E. (1955).Estimates of genetic and environmental variability in soyabean. Agronomy Journal, 47(7), 314-318. https://doi.org/10.2134/agronj1955.00021962004700070009x

Lamara, A., Fellahi, Z. El-A., Hannachi, A. & Benniou, R. (2022). Assessing the phenotypic variation, heritability and genetic advance in bread wheat (Triticum aestivum L.) candidate lines grown under rainfed semi-arid region of Algeria. Revista Facultad Nacional de Agronomía Medellín, 75(3), 10107-10118. https://doi.org/10.15446/rfnam.v75n3.100638

Lush, J.L. (1945). Animal breeding plans. Iowa State University Press.

Nandhini, D., Arumugam, T., Ganesan, K.N., Subramanian, K.S. & Lourdusamy, D.K. (2020). Assessment of variability in broccili (Brassica Oleracea Var. Italica L.) genotypes. The Pharma Innovation Journal, 9(1), 338-340.

Sharma, P., Punia, M.S. & Kamboj, M.C. (2015). Estimates of heritability, heterosis and inbreeding depression for yield and quality traits in maize. Forage Research, 41(3), 139-146.

Singh, S.K., Singh, C.M. & Lal, G.M. (2011). Assessment of genetic variability for yield and its component characters in rice (Oryza sativa L.). Research in Plant Biology, 1(4), 73-76.

Sivasubramaniam, S. & Madhava Menon, P. (1973). Inheritance of short stature in rice. Madras Agriculture Journal, 60(9), 1129-1133.

Souza, A.R.R., Miranda, G.V., Pereira, M.G. & de Souza L.V. (2009). Predicting the genetic gain in the Brazillian white maize landrace. Ciência Rural, 39(1), 19-24. https://doi.org/10.1590/S0103-84782009000100004