Effect of Modified Estradiol/Progesterone and hCG Protocol for Time Artificial Insemination on Reproductive Performance in Dairy Cows

Main Article Content

Sarawut Chareansalung
Phacharaphon Eamsaad
Wisut Maitreejet
Thawee Laodim
Taweeporn Raungprim
Sutisa Majarune

Abstract

This study evaluated estrus synchronization protocols using estradiol (E2), progesterone (P4) and human chorionic gonadotropin (hCG) in dairy cows. Fifteen Holstein-Friesian crossbred cows were randomly divided into three groups: Group 1 (E2+P4, n=5); Group 2 (E2+P4+hCG, n=5); and Group 3 (E2+P4+double dose hCG, n=5). On day 0, cows received intramuscular (IM) injections of estradiol benzoate (2 ml, 1 mg/ml) and insertion of a progesterone device (CIDR, 1.38 g). On day 7, CIDR was removed, and cows received prostaglandin (2 ml, 0.25 mg/ml cloprostenol). Additionally, Group 2 received 300 IU hCG on day 7 while Group 3 received 300 IU hCG on days 7 and 8. On day 8, all cows received estradiol cypionate (1 ml, 1 mg/ml), and artificial insemination was performed on day 10. Results showed no significant differences (P>0.05) among groups regarding uterine and ovarian characteristics. The diameter of the largest follicle on day 10 was also not significantly different (P=0.45). On day 20, no significant differences were found among groups regarding ovulation rate (P=0.72), corpus luteum diameter (P=0.24), and blood flow score (P=0.26). In conclusion, adding hCG to an E2/P4-based estrus synchronization protocol did not improve reproductive performance in dairy cows compared to protocols without hCG

Article Details

Section
Animal Science

References

Bihon, A., Assefa, A., & González-Redondo, P. (2021). Prostaglandin based estrus synchronization in cattle: A review. Cogent Food & Agriculture, 7(1). https://doi.org/10.1080/23311932.2021.1932051

Burns, M. G., Buttrey, B. S., Dobbins, C. A., Martel, C. A., Olson, K. C., Lamb, G. C., & Stevenson, J. S. (2008). Evaluation of human chorionic gonadotropin as a replacement for gonadotropin-releasing hormone in ovulation-synchronization protocols before fixed timed artificial insemination in beef cattle. Journal of Animal Science, 86(10), 2539-2548. https://doi.org/10.2527/jas.2008-1122

Cardoso Consentini, C. E., Wiltbank, M. C., & Sartori, R. (2021). Factors that optimize reproductive efficiency in dairy herds with an emphasis on timed artificial insemination programs. Animals (Basel),11(2), 301. https://doi.org/10.3390/ani11020301

Cedeño, A. V., Cuervo, R., Tríbulo, A., Tríbulo, R., Andrada, S., Mapletoft, R., Menchaca, A., & Bó, G. A. (2021). Effect of expression of estrus and treatment with GnRH on pregnancies per AI in beef cattle synchronized with an estradiol/progesterone-based protocol. Theriogenology, 161, 294–300. https://doi.org/10.1016/j.theriogenology.2020.12.014

Colazo, M. G., Kastelic, J. P., Whittaker, P. R., Gavaga, Q. A., Wilde, R., & Mapletoft, R. J. (2004). Fertility in beef cattle given a new or previously used CIDR insert and estradiol, with or without progesterone. Animal Reproduction Science, 81(1-2),

-34. https://doi.org/10.1016/j.anireprosci.2003.09.003

Côrtes, L. R., Souza-Fabjan, J. M. G., Dias, D. S., Martins, B. B., Maia, A. L. R. S., Veiga, M. O., Arashiro, E. K. N., Brandão, F. Z., Oliveira, M. E. F., Bartlewski, P. M., & Fonseca, J. F. (2021). Administration of a single dose of 300 IU of human chorionic gonadotropin seven days after the onset of estrus improves pregnancy rate in dairy goats by an unknown mechanism. Domestic Animal Endocrinology, 74, 106579. https://doi.org/10.1016/j.domaniend.2020.106579

Cunha, T. O., Martinez, W., Walleser, E., & Martins, J. P. N. (2021). Effects of GnRH and hCG administration during early luteal phase on estrous cycle length, expression of estrus and fertility in lactating dairy cows. Theriogenology, 173, 23-31 https://doi.org/

1016/j.theriogenology.2021.06.010

da Silva, A. G., Nishimura, T. K., Rocha, C. C., Motta, I. G., Neto, A. L., Ferraz, P. A., &Pugliesi, G. (2022). Comparison of estradiol benzoate doses for resynchronization of ovulation at 14 days after timed-AI in suckled beef cows. Theriogenology, 184, 41-50.

De Rensis, F., Lopez-Gatius, F., Garcia-Ispierto, I., & Techakumpu, M. (2010). Clinical use of human chorionic gonadotropin in dairy cows: an update. Theriogenology, 73(8), 1001-1008. https://doi.org/10.1016/j.theriogenology.2009.11.027

Ferre, L. B., Cervino, M. N., Jaeschke, J., Itterman, M., McLean, J., Aragon, A., &de la Sota, R. L. (2025). Evaluation of GnRH- versus estradiol-based protocols for ovulation synchronization in postpartum Bos taurus grazing beef cows submitted to fixed-time artificial insemination. Theriogenology, 233, 1-7. https://doi.org/10.1016/j.theriogenology.2024.11.008

Garcia-Ispierto, I., De Rensis, F., Casas, X., Caballero, F., Mur-Novales, R., & Lopez-Gatius, F. (2018). Reproductive performance of lactating dairy cows after inducing ovulation using hCG in a five-day progesterone-based fixed-time AI protocol. Theriogenology, 107, 175-179. https://doi.org/10.1016/j.theriogenology.2017.11.012

Giordano, J. O., Edwards, J. L., Di Croce, F. A., Roper, D., Rohrbach, N. R., Saxton, A. M., &Schrick, F. N. (2013). Ovulatory follicle dysfunction in lactating dairy cows after treatment with Folltropin-V at the onset of luteolysis. Theriogenology, 79(8), 1210-1217. https://doi.org/10.1016/j.theriogenology.2013.02.020

Herzog, K., Brockhan-Ludemann, M., Kaske, M., Beindorff, N., Paul, V., Niemann, H., & Bollwein, H. (2010). Luteal blood flow is a more appropriate indicator for luteal function during the bovine estrous cycle than luteal size. Theriogenology, 73(5), 691-697. https://doi.org/10.1016/j.theriogenology.2009.11.016

Innes, D. J., Pot, L. J., Seymour, D. J., France, J., Dijkstra, J., Doelman, J., & Cant, J. P. (2024). Fitting mathematical functions to extended lactation curves and forecasting late-lactation milk yields of dairy cows. J Dairy Sci, 107(1), 342-358. https://doi.org/10.3168/jds.2023-23478

Pandey, A. K., Ghuman, S. P. S., Dhaliwal, G. S., Honparkhe, M., Phogat, J. B., & Kumar, S. (2018). Effects of preovulatory follicle size on estradiol concentrations, corpus luteum diameter, progesterone concentrations and subsequent pregnancy rate in buffalo cows (Bubalus bubalis). Theriogenology, 107, 57-62. https://doi.org/10.1016/j.theriogenology.2017.10.048

Pfeifer, L. F. M., Castro, N. A., Neves, P. M. A., Cestaro, J. P., & Schneider, A. (2017). Comparison between two estradiol-progesterone based protocols for timed artificial insemination in blocks in lactating Nelore cows. Animal Reproduction Science, 181, 125-129. https://doi.org/10.1016/j.anireprosci.2017.03.025

Prata, A. B., Drum, J. N., Melo, L. F., Araujo, E. R., & Sartori, R. (2018). Effect of different chorionic gonadotropins on final growth of the dominant follicle in Bos indicus cows. Theriogenology, 111, 52-55. https://doi.org/10.1016/j.theriogenology.2018.01.011

Rocha, C. C., Martins, T., Cardoso, B. O., Silva, L. A., Binelli, M., & Pugliesi, G. (2019). Ultrasonography-accessed luteal size endpoint that most closely associates with circulating progesterone during the estrous cycle and early pregnancy in beef cows. Animal Reproduction Science, 201, 12-21. https://doi.org/10.1016/j.anireprosci.2018.12.003

Rodriguez, A. M., Maresca, S., Lopez-Valiente, S., Bilbao, M. G., Moran, K. D., Bartolome, J. A., &Long, N. M. (2023). Comparison of the 7-day CO-Synch and 8-day estradiol-based protocols for estrus synchronization and timed artificial insemination in suckled Bos taurus cows. Theriogenology, 200, 70-76. https://doi.org/10.1016/j.theriogenology.2023.02.003

Sartori, R., Consentini, C. E. C., Alves, R., Silva, L. O., & Wiltbank, M. C. (2023). Review: Manipulation of follicle development to improve fertility of cattle in timed-artificial insemination programs. animal, 17 Suppl 1, 100769. https://doi.org/10.1016/j.animal.2023.100769

Taghizadeh, E., Barati, F., Fallah, A. A., Hemmatzadeh-Dastgerdi, M., & Nejabati, M. S. (2024). Estrogens improve the pregnancy rate in cattle: A review and meta-analysis. Theriogenology, 220, 35-42. https://doi.org/10.1016/j.theriogenology.2024.03.005

Valchuk, O. A., Kovpak, V. V., Kovpak, O. S., Salizhenko, M. I., Derkach, S. S., & Mazur, V. M. (2023). Concentration of progesterone in the blood serum and size of the corpus luteum as criteria for selection of recipient cows for embryo transfer. Regulatory Mechanisms in Biosystems, 14(4), 564-569. https://doi.org/10.15421/022382

Vynckier, L., Debackere, M., De Kruif, A., & Coryn, M. (1990). Plasma estradiol‐17ß concentrations in the cow during induced estrus and after injection of estradiol‐17ß benzoate and estradiol‐17ß cypionate‐a preliminary study. Journal of Veterinary Pharmacology and Therapeutics, 13(1), 36-42. https://doi.org/10.1111/j.1365-2885.1990.tb00745.x

Yanez, U., Murillo, A. V., Becerra, J. J., Herradon, P. G., Pena, A. I., & Quintela, L. A. (2023). Comparison between transrectal palpation, B-mode and Doppler ultrasonography to assess luteal function in Holstein cattle. Frontiers in Veterinary Science, 10, 1162589. https://doi.org/10.3389/fvets.2023.1162589