Optimizing the Surface Roughness of ST37 Steel using CNC Turning Machinery through the Taguchi Technique
DOI:
https://doi.org/10.14456/jeit.2023.22Keywords:
CNC Turning, Surface Roughness, Taguchi Method, ST37 Steel, Process OptimizationAbstract
This research aims to study and improve the forming process of ST37 steel using CNC turning machinery to enhance the surface quality of workpieces, which is a significant factor affecting their functionality and durability. The Taguchi method was employed for experimental design and result analysis, considering three variables: spindle rotation speed, feed rate of the turning tool, and cutting depth. In the experimental design, the L9 Taguchi array was utilized due to its effectiveness in analyzing the relationships between various factors and levels. Experiments were conducted by measuring the surface roughness of the workpieces post-turning. In result analysis, the S/N ratio was utilized to assess variability and process stability, along with Analysis of Variance (ANOVA) to examine the significance of each factor concerning the workpiece’s surface roughness. The research findings indicate the optimal conditions for forming ST37 steel, achieving the smoothest surface quality, were a spindle rotation speed of 2000 RPM, a feed rate of the turning tool at 0.06 mm per rotation, and a cutting depth of 0.5 mm. These conditions yielded the best surface smoothness values 0.984 mm. The outcomes of this research can serve as guidelines for improving and developing the workpiece forming process in industries, particularly where superior surface smoothness is required. Moreover, the research can help reduce costs and enhance efficiency in the production process, enabling better market responsiveness and competitive advantages in the industry.
References
[1] N. Rathod, M. Chopra, P. Chaurasiya, and U. S. Vidhate, " Optimization of Tool Life, Surface Roughness and Production Time in CNC Turning Process Using Taguchi Method and ANOVA," Annals of Data Science, vol. 10, 2022, doi: 10. 10.1007/s40745-022-00423-7.
[2] K. M and D. M., "Analysis of tool vibration and surface roughness during turning process of tempered steel samples using Taguchi method," Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, vol. 235, no. 5, pp. 1429-1438, 2021, doi: 10.1177/0954408921100 1976.
[3] F. Susac, F. Stan, C. Fetecau, and I. Besliu, "Prediction and Optimization of Surface Roughness and Cutting Force in Turning of UHMWPE by Using Taguchi Method, Response Surface Methodology and Neural Networks," in Proceedings of the ASME 2020 15th International Manufacturing Science and Engineering Conference. Volume 2: Manufacturing Processes; Manufacturing Systems; Nano/Micro/Meso Manufacturing; Quality and Reliability, Virtual, Online, September 3, 2020: ASME, p. V002T06A035, doi: https://doi.org/10.1115/MSEC2020-8534.
[4] N. Mandal, B. Doloi, B. Mondal, and R. Das, "Optimization of flank wear using Zirconia Toughened Alumina (ZTA) cutting tool: taguchi method and regression analysis," Measurement, vol. 44, pp. 2149– 2155, 2011.
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2023 Journal of Engineering and Industrial Technology, Kalasin University

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
ลิขสิทธิ์ของวารสาร
เนื้อหาและข้อมูลในบทความที่ลงตีพิมพ์ในวารสารศูนย์ดัชนีการอ้างอิงวารสารไทย ถือเป็นข้อคิดเห็นและความรับผิดชอบของผู้เขียนบทความโดยตรงซึ่งกองบรรณาธิการวารสาร ไม่จำเป็นต้องเห็นด้วย หรือร่วมรับผิดชอบใด ๆ
บทความ ข้อมูล เนื้อหา รูปภาพ ฯลฯ ที่ได้รับการตีพิมพ์ในวารสารศูนย์ดัชนีการอ้างอิงวารสารไทย ถือเป็นลิขสิทธิ์ของวารสารศูนย์ดัชนีการอ้างอิงวารสารไทย หากบุคคลหรือหน่วยงานใดต้องการนำทั้งหมดหรือส่วนหนึ่งส่วนใดไปเผยแพร่ต่อหรือเพื่อกระทำการใด จะต้องได้รับอนุญาตเป็นลายลักอักษรจากวารสารศูนย์ดัชนีการอ้างอิงวารสารไทยก่อนเท่านั้น