ประสิทธิภาพของอัลกอริทึมแมลงหวี่สำหรับการออกแบบคานลึกคอนกรีตเสริมเหล็ก

ผู้แต่ง

  • Assanai Tapao Rajamangala University of Technology Isan Khonkaen Campus

คำสำคัญ:

อัลกอริทึมแมลงหวี่, การออกแบบที่เหมาะสม, การออกแบบคานลึกคอนกรีตเสริมเหล็ก

บทคัดย่อ

งานวิจัยนี้นำเสนอประสิทธิภาพของอัลกอริทึมแมลงหวี่ในการออกแบบคานลึกคอนกรีตเสริมเหล็ก โดยมีวัตถุประสงค์เพื่อการออกแบบที่มีความประหยัดสูงสุด อัลกอริทึมแมลงหวี่ถูกสร้างขึ้นโดยใช้ Microsoft Visual Studio และทดสอบออกแบบกับตัวอย่างคานลึกจำนวน 3 ตัวอย่าง โดยมีการกำหนดค่าจำนวนแมลงหวี่ไว้ตั้งแต่ 100 ถึง 500 ตัว และจำนวนการทำซ้ำตั้งแต่ 50 ถึง 500 ครั้ง ผลการทดลองพบว่า จำนวนแมลงหวี่และจำนวนการทำซ้ำมีผลกระทบโดยตรงต่อการค้นพบคำตอบที่เหมาะสมของอัลกอริทึมแมลงหวี่ ยิ่งกว่านั้น การเลือกใช้จำนวนแมลงหวี่ตั้งแต่ 400 ตัวและจำนวนการทำซ้ำตั้งแต่ 350 ครั้งขึ้นไปจะส่งผลให้ได้รับราคาเฉลี่ย และค่าส่วนเบี่ยงเบนมาตรฐานที่ดีกว่าค่าอื่น นอกจากนี้ ผลการออกแบบที่เหมาะสมยังมีความประหยัดมากกว่าวิธีการออกแบบอื่นที่ถูกนำมาเปรียบเทียบโดยเฉลี่ยร้อยละ 8

เอกสารอ้างอิง

ACI Committee 318. (2019). Building code requirements for structural concrete : (ACI 318-19) ; and commentary (ACI 318-19). Farmington Hills, MI :American Concrete Institute.

Adhikary, S.D., Li, B., and Fujikake, K. (2013). Strength and behavior in shear of reinforced concrete deep beams under dynamic loading conditions, Nuclear Engineering and Design, vol. 259(1), June 2013, pp. 14-28.

Kareim, A., Arafa, A., Hassanin, A., et al. (2020). Behavior and strength of reinforced concrete flanged deep beams with web openings, Structures, vol. 27(1), October 2020, pp. 506-524.

Nassif, M., Erfan, A., Fadel, O., et al. (2021). Flexural behavior of high strength concrete deep beams reinforced with GFRP bars, Case Studies in Construction Materials, vol. 15(1), December 2021, e00613.

Ibrahim, M.A., Thakeb, A., Mostfa, A.A., etal. (2018). Proposed formula for design of deep beams with shear openings, HBRC Journal, vol. 14(3), December 2018, pp. 450-465.

Engineering Institute of Thailand. Standard of reinforced concrete building, strength design method (E.I.T. 1008-38), Bangkok, Engineering Institute of Thailand.

Liu, D., Qin, F., Di, J., Zhang, Z. (2023). Flexural behavior of reinforced concrete (RC) beams strengthened with carbon fiber reinforced polymer (CFRP) and ECC, Case Studies in Construction Materials, vol. 19(1), December 2023, e02270.

Abbood, I. (2023). Strut-and-tie model and its applications in reinforced concrete deep beams: A comprehensive review, Case Studies in Construction Materials, vol. 19(1), December 2023, e02643.

Ying, Z., Xilin, L., Dagen, W. and Ruifu, Z. (2012). A practical design method for reinforced concrete structures with viscous dampers, Engineering Structures, vol. 39(1), June 2012, pp. 187-198.

Puttegowda, M., Nagaraju, S.B. (2025) Artificial intelligence and machine learning in mechanical engineering: Current trends and future prospects, Engineering Applications of Artificial Intelligence, vol. 142, February 2025, 109910.

Wen-Tsao, P. (2012). A new Fruit Fly Optimization Algorithm: Taking the financial distress model as an example, Knowledge-Based Systems, vol. 26(1), February 2012, pp. 69-74.

Lian, J. (2021). An optimization model of cross-docking scheduling of cold chain logistics based on fuzzy time window, Journal of Intelligent & Fuzzy Systems, vol. 41(1). June 2021, pp. 1-15.

Han, J., Wang, P. and Yang, X. (2012). Tuning of PID controller based on Fruit Fly Optimization Algorithm, paper presented in IEEE International Conference on Mechatronics and Automation, Chengdu, China.

Alexander, B., Michael, D. and Matthias M. (2020). The neural network behind the eyes of a fly, Current Opinion in Physiology, vol. 16(1), August 2020, pp. 33-42.

Li, Y. and Han, M. (2020). Improved fruit fly algorithm on structural optimization, Brain Informatics, vol. 7(1), February 2020, pp. 1-13.

Ranjeet, K., and Vijay, K. (2023). A systematic review on fruit fly optimization algorithm and its applications, Artificial Intelligence Review, vol. 56(11), November 2023, pp. 13015–13069.

Pan, W. (2011). A new fruit fly optimization algorithm: Taking the financial distress model as an example, Knowledge-Based Systems, vol. 26(1), February 2012, pp. 69-74.

Huiying, J. (2024). Design of fruit fly optimization algorithm based on Gaussian distribution and its application to image processing, Systems and Soft Computing, vol. 6(1), 2024, 200090.

Xiao, W., Yang, Y., Xing, H. and Meng, X. (2015). Clustering Algorithm Based on Fruit Fly Optimization, Lecture Notes in Computer Science, vol. 9436(1), pp. 408-419.

Committee of Construction Price. (2024), Labor account/operation for estimate and calculate price (revised edition) year 2024, Bangkok, Committee of Construction.

Kong, F.K. (2002). Reinforced Concrete Deep Beams, New York, Taylor & Francis e-Library.

Hazim, I. and Mesut, G. (2014). Parameter Analysis on Fruit Fly Optimization Algorithm, Journal of Computer and Communications, Vol.2 No.4(1), March 2014, pp. 1-5.

Tapao, A. and Cheerarot, R. (2021). Optimum design of reinforced concrete deep beams using bat algorithm, Engineering Journal of Research and Development, vol. 32(4), October 2021, pp. 29-41.

ดาวน์โหลด

เผยแพร่แล้ว

2025-06-30

รูปแบบการอ้างอิง

Tapao, Assanai. 2025. “ประสิทธิภาพของอัลกอริทึมแมลงหวี่สำหรับการออกแบบคานลึกคอนกรีตเสริมเหล็ก”. วารสารวิศวกรรมศาสตร์และการวิจัยเชิงนวัตกรรม 3 (1). Khon Kaen, Thailand:1-13. https://ph03.tci-thaijo.org/index.php/JEIRKKC/article/view/3625.

ฉบับ

ประเภทบทความ

บทความวิจัย

หมวดหมู่