Preparation of CSNPs-TiO2@SiNPs Nanocomposite from Rice Husk for Decolorization of Dyes
Main Article Content
Abstract
Abstract
This research to study on the preparation of a nanocomposite material, CSNPs-TiO2@SiNPs, using chitosan nanoparticles (CSNPs) derived from shrimp shells combined with titanium dioxide (TiO2) embedded in silica nanoparticles (SiNPs) synthesized from rice husk ash. The purpose of this composite is to enhance the efficiency of dye degradation, specifically methylene blue. The characterization of the CSNPs-TiO2@SiNPs nanocomposite was carried out using several techniques, including X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), Dynamic Light Scattering (DLS), and Scanning Electron Microscopy (SEM). The photocatalytic activity for the reduction of methylene blue was tested using UV-Visible spectroscopy.
XRD analysis revealed that TiO2 exhibited an anatase crystal structure. DLS analysis showed that the particle sizes of CSNPs, TiO2, and SiNPs were 356.7 nm, 224.3 nm, and 422.8 nm, respectively. SEM analysis of the CSNPs-TiO2@SiNPs composite, prepared with TiO2 at varying amounts (0.5, 1.0, and 3 grams), indicated that chitosan and TiO2 were well-dispersed within the porous structure of the silica derived from rice husk. In terms of photocatalytic performance, with an initial methylene blue concentration of 100 mg/L, the CSNPs-TiO2@SiNPs composite showed significantly higher dye degradation efficiency compared to individual CSNPs, TiO2 and SiNPs indicating that both CSNPs and SiNPs enhance the photocatalytic activity of TiO2. Moreover, the CSNPs-TiO2@SiNPs composite demonstrated a remarkable degradation efficiency of 99.998% for methylene blue within just 1 minute.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
พัชราภรณ์ พิมพ์จันทร์. (2562). การเตรียมวัสดุผสม SiO2-TiO2 โดยใช้สารตั้งต้น SiO2 จากแกลบข้าว (วิทยานิพนธ์ปริญญา มหาบัณฑิต, มหาวิทยาลัยราชภัฏมหาสารคาม).
Afzal, S., Naeem, R., Sherino, B., Nabi, N., Behlil, F., & Julkapli, N. M. (2023). Impact of chitosan on CS/TiO2 composite system for enhancing its photocatalytic performance towards dye degradation. Desalination and Water Treatment, 283, 274–279.
Aliaa, R. N., & Othman, S. A. (2023). Characterization of doped titanium dioxide (TiO2) at different calcination temperature using X-ray diffraction (XRD). ASM Science Journal, 18, 1-8.
Ali, S. W., Rajendran, S., & Joshi, M. (2011). Synthesis and characterization of chitosan and silver loaded chitosan nanoparticles for bioactive polyester. Carbohydrate Polymers, 83(2), 438–446.
Al-Obaidi, N. S., Sadeq, Z. E., Mahmoud, Z. H., Abd, A. N., Al-Mahdawi, A. S., & Ali, F. K. (2023). Synthesis of chitosan-TiO2 nanocomposite for efficient Cr(VI) removal from contaminated wastewater sorption kinetics, thermodynamics and mechanism. Journal of Oleo Science, 72(3), 337–346.
Banivaheb, S., Dan, S., Hashemipour, H., & Kalantari, M. (2021). Synthesis of modified chitosan TiO2 and SiO2 hydrogel nanocomposites for cadmium removal. Journal of Saudi Chemical Society, 25(8), Article 101283.
Chougala, L. S., Yatnatti, M. S., Linganagoudar, R. K., Kamble, R. R., & Kadadevarmath, J. S. (2017). A simple approach on synthesis of TiO2 nanoparticles and its application in dye sensitized solar cells. Journal of Nano- and Electronic Physics, 9(4), Article 04005.
Habiba, U., Tan, C. J., Shezan, S. K. A., Das, R., Ang, B. C., & Afifi, A. M. (2019). Synthesis and characterization of chitosan/TiO2 nanocomposite for the adsorption of Congo red. Desalination and Water Treatment, 164, 361–367.
Huang, C., & Peng, B. (2021). Photocatalytic degradation of patulin in apple juice based on nitrogen-doped chitosan-TiO2 nanocomposite prepared by a new approach. LWT - Food Science and Technology, 140, Article 110726.
Makhin, A., Chaikham, A., & Saelee, K. (2017). The photocatalytic reaction of TiO2@SiO2 nanocomposites. In Proceedings of the 7th International Conference on Sciences and Social Sciences (pp. 667–677). Rajabhat Maha Sarakham University.
Naghizadeh, A., & Ghofouri, M. (2019). Synthesis of low cost nanochitosan from Persian Gulf shrimp shell for efficient removal of Reactive Blue 29 (RB29) dye from aqueous solution. Iranian Journal of Chemistry and Chemical Engineering, 38(6), 251–262.
Saceda, J.-J. F., de Leon, R. L., Rintramee, K., Prayoonpokarach, S., & Wittayakun, J. (2011). properties of silica from rice husk and rice husk ash and their utilization for zeolite Y synthesis. Quim. Nova, 34(8), 1394-1397.
Saravanan, S., & Dubey, R. S. (2020). Synthesis of SiO2 nanoparticles by sol-gel method and their optical and structural properties. Romanian Journal of Information Science and Technology, 23(1), 105–112.
Shao, L., Liu, H., Zeng, W., Zhou, C., Li, D., Wang, L., Lan, Y., Xu, F., & Liu, G. (2019). Immobilized and photocatalytic performances of PDMS-SiO2-chitosan@TiO2 composites on pumice under simulated sunlight irradiation. Applied Surface Science, 478, 1017–1026.
Varma, R., & Vasudevan, S. (2020). Extraction, characterization, and antimicrobial activity of chitosan from horse mussel Modiolus modiolus. ACS Omega, 5(32), 20224–20230.
Xiang, Y., Wang, H., He, Y., & Song, G. (2015). Efficient degradation of methylene blue by magnetically separable Fe3O4/chitosan/TiO2 nanocomposites. Desalination and Water Treatment, 55(4), 1018–1025.