Development of a Deep Learning Model for Sugarcane Disease Detection Using Leaf Images

Authors

Keywords:

MobileNetV2, EfficientNetB0, Deep Learning, Sugarcane Disease, Image Processing, Detection

Abstract

This research aims to develop a deep learning model for detecting and classifying four major sugarcane diseases found in Thailand: sugarcane mosaic disease, red rot, rust, and leaf scorch. The study utilizes sugarcane leaf images as input data. The development process includes data preparation, dataset diversification through data augmentation, and training models using EfficientNetB0 and MobileNetV2 to compare performance. The experimental results show that EfficientNetB0 achieved the highest accuracy with an F1-Score of 0.95. Furthermore, an analysis of the effects of image brightness and blur on model performance reveals that these factors do not impact prediction accuracy, demonstrating the model's robustness under varying environmental conditions. This research highlights the potential of applying the developed model for effective sugarcane disease detection and classification, supporting disease management in the agricultural sector.

References

Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspective. The MIT Press.

Aggarwal, C. C. (2018). Neural Networks and Deep Learning: A Textbook. Springer.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction (2nd ed.). New York, NY: Springer.

มิตรผลโมเดิร์นฟาร์ม. (2020). การวินิจฉัยอ้อยเบื้องต้นจากอาการผิดปกติทางใบ. Retrieved July 25, 2024, from https://www.mitrpholmodernfarm.com/news/2020/05/การวินิจฉัยอ้อยเบื้องต้น-จากอาการผิดปกติทางใบ

Amazon Web Services. (2020). การเสริมข้อมูลคืออะไร. Retrieved July 25, 2024, from https://aws.amazon.com/th/what-is/data-augmentation/

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An Introduction to Statistical Learning: with Applications in R. New York, NY: Springer.

Duda, R. O., Hart, P. E., & Stork, D. G. (2001). Pattern Classification (2nd ed.). John Wiley & Sons.

Big Data Institute. (2022). 4 เหตุผลที่จะทำให้คุณตกหลุมรัก Box Plot. Retrieved July 26, 2024, from https://bdi.or.th/big-data-101/four-reasons-you-ll-love-box-plot/

Sarala, R., SwethaVishnu, V. A., & Raji, T. (2024). Sugarcane disease detection along chatbot. International Journal of Engineering Research in Computer Science and Engineering, 11(3), [Page numbers not available]. Retrieved July 12, 2024, from https://ijercse.com/article/March%207.pdf

Amarasingam, N., Gonzalez, F., Salgadoe, A. S. A., Sandino, J., & Powell, K. (2022). Detection of White Leaf Disease in Sugarcane Crops Using UAV-Derived RGB Imagery with Existing Deep Learning Models. Remote Sensing, 14(23), 6137.

K. Krishnan O, N. Shaju, J. Joseph, G. Mohandas, N. CK and T. T, "Artificial Intelligence Based WhatsApp Bot for Plant Disease Detection," 2023 Innovations in Power and Advanced Computing Technologies (i-PACT), Kuala Lumpur, Malaysia, 2023, pp. 1-6, doi: 10.1109/i-PACT58649.2023.10434523.

GeeksforGeeks. (2024). EfficientNet B0 to B7. Retrieved July 20, 2024, from https://www.geeksforgeeks.org/efficientnet-architecture/

Hollemans, M. (2018, April 22). MobileNet version 2. MachineThink. Retrieved July 17, 2024, from https://machinethink.net/blog/mobilenet-v2/

สำนักงานคณะกรรมการอ้อยและน้ำตาลทราย. (2024). คู่มือวินิจฉัยโรคอ้อย. Retrieved July 20, 2024, from https://cspc3.ocsb.go.th/wp-content/uploads/2024/02/คู่มือวินิจโรคอ้อย.pdf

Daphal, S., Koli, S., Koli, D., & Mane, P. (2022). Sugarcane leaf disease dataset [Data set]. Mendeley Data. Retrieved July 20, 2024, from https://data.mendeley.com/datasets/9424skmnrk/1

Downloads

Published

2024-09-22

How to Cite

1.
Tangchoopong T, Phuangthapthim S, Thongdee P. Development of a Deep Learning Model for Sugarcane Disease Detection Using Leaf Images. Acad. J. Sci. Appl. Sci. [internet]. 2024 Sep. 22 [cited 2026 Jan. 11];9(18):e4048. available from: https://ph03.tci-thaijo.org/index.php/ajsas/article/view/4048