ON TERNARY CUBIC DIOPHANTINE EQUATION 11(x^2 + y^2) -21xy + x + y + 1 = 68z^3

Authors

  • kamonrat kamduan
  • Waraporn Panup
  • Direk Bualuang
  • supawinee Sattayaporn
  • Naravadee Nualsaard

Abstract

The non-homogeneous ternary cubic diophantine equation respresented by 11(x^2 + y^2)-21xy + x + y + 1 = 68z^3 is considered for its patterns of non-zero distinct integral solutions. A few fascinaling properties among the solutions and special integer are presented.

Downloads

Published

2023-06-30

How to Cite

1.
kamduan kamonrat, Panup W, Bualuang D, Sattayaporn supawinee, Nualsaard N. ON TERNARY CUBIC DIOPHANTINE EQUATION 11(x^2 + y^2) -21xy + x + y + 1 = 68z^3. Acad. J. Sci. Appl. Sci. [internet]. 2023 Jun. 30 [cited 2026 Jan. 14];7(14):47-55. available from: https://ph03.tci-thaijo.org/index.php/ajsas/article/view/3530