Non-contact Void Detection in Concrete Layers using Reflection and Transmission Coefficients Using a Microstrip Patch Antenna

Main Article Content

Kriangkrai Treerittivitaya
Chaiyapat Taweesubpithak
Pornpimon Chaisaeng

Abstract

This article is to present non-contact void detection in concrete layers based on the reflected power electromagnetic waves response to different permittivities of concrete with and without voids. The measurement is accomplished by employing a vector network analyzer connected with a microstrip patch antenna. The antenna was developed on a double-sided FR-4 PCB. The antenna was designed to operate at 1.614 GHz with a return loss less than -25 dB. The reflection coefficient S11 was measured in the concrete by the transmitting antenna, while the receiving antenna on the opposite side of concrete blocks measured the transmission coefficient S21. The concrete block was measured along its length and the measurement positions were adjusted using a driven rail system. The results for the concrete sample with voids and without voids showed that the average S11 was -30.93 dB and -22.88 dB respectively while the average S21 was -16.48 and -18.86 dB, respectively. The reference values of S11 and S21 of concrete voids are respectively lower than -28.11 dB and higher than -17.53 dB. The accuracy of void detection in concrete is at 94%, that can be concluded that electromagnetic waves can be effectively applied to detect concrete voids.

Article Details

Section
Engineering

References

พรพิมล ฉายแสง, อลงกต ไชยอุปละ, สินาด โกศลานันท์ และ ประพัน ลี้กุล.(2566). ระบบตรวจสอบคุณภาพการบ่มคอนกรีตในช่วงอายุต้นแบบไม่ทำลายด้วยอัตราส่วนของกำลังงานการสะท้อนในย่านความถี่ไมโครเวฟ. วารสารวิทยาศาสตร์และเทคโนโลยี, 31(5), 108-122.

ภราดร กัณหากรณ์, เวธนี ฤกษสโมสร, วิศรุตา ฤกษสโมสร, นรสิงห์ อินมณเทียร, ทนงศักดิ์ อิ่มใจ, มนเทียร เสร็จกิจ, สุพชัย ทิพย์ภักดี และ ชิระวัฒน์ วัฒนพานิช. (2566). การทำนายพฤติกรรมของโครงสร้างคอนกรีตผสมเศษคอนกรีตเก่ารับแรงเฉือนด้วยโปรแกรมประมวลผลภาพถ่าย WU-DIC. วารสารวิชาการพระจอมเกล้าพระนครเหนือ, 33(2), 355-368.

Cao, Q., & Al-Qadi, L. I. (2021). Development of a numerical model to predict the dielectric properties of heterogeneous asphalt concrete. Sensors, 21(8), 1-15. https://doi.org/10.3390/s21082643

Cotic, P., Kolaric, D., Bosiljkov, V. B., Bosiljkov, V., & Jaglicic Z. (2015). Determination of the applicability and limits of void and delamination detection in concrete structures using infrared thermography. NDT&E International, 74, 87-93. https://doi.org/10.1016/j.ndteint.2015.05.003

Haq, M. A. U., Armghan, A., Aliqab, K. ,& Alsharari, M. (2023). A Review of Contemporary Microwave Antenna Sensors: Designs, Fabrication Techniques, and Potential Application. IEEE Access, 11, 40064-40074. https://doi.org/10.1109/ACCESS.2023.3268109

Hilal, A. A., Thom, N. H., & Dawson, A. R. (2015). On void structure and strength of foamed concrete made without/with additives. Construction and Building Materials, 85, 157–164. https://doi.org/10.1016/j.conbuildmat.2015.03.093

Hren, M., Kosec, T., & Legat, A. (2024). An investigation into corrosion around voids at the steel-concrete interface. Cement and Concrete Research, 181(107545), 1-17. https://doi.org/10.1016/j.cemconres.2024.107545

Hoang, N. D., & Nguyen, Q. L. (2020). A novel approach for automatic detection of concrete surface voids using image texture analysis and history-based adaptive differential evolution optimized support vector machine. Advances in Civil Engineering, 2020(4190682), 1-15. https://doi.org/10.1155/2020/4190682

Islam, S. S., Rahman, M. A., Faruque, M. R. I., & Islam, M. T. (2018). Design and analysis with different substrate materials of a new metamaterial for satellite applications. Science and Engineering of Composite Materials, 25(1), 59–66. https://doi.org/10.1515/secm-2015-0526

Jiao, L., Ye, Q., Cao, X., Huston, D., & Xia, T. (2020). Identifying concrete structure defects in GPR image. Measurement, 160(107839), 1-8. https://doi.org/10.1016/j.measurement.2020.107839

Moosazadeh, M., Kharkovsky, S., Case, T. J., & Samali, B. (2017). Antipodal Vivaldi antenna with improved radiation characteristics for civil engineering applications. IET Microwaves, Antennas & Propagation, 11(6), 796-803. https://doi.org/10.1049/iet-map.2016.0720

Nguyen, V. H., Pham, T.N., Huh, J. H., Choi, P. J., Kim, Y. B., Kwon, O. H., & Kwon, K. R. (2025). Efficient synthetic defect on 3D object reconstruction and generation pipeline for digital twins smart factory, Sensors, 25(6908), 1-24. https://doi.org/10.3390/s25226908

Oswald, G. K. A., Rezvanbehbahani, S., & Stearns, L. A., (2018). Radar evidence of ponded subglacial water in Greenland, Journal of Glaciology, 64(247) ,711-729. https://doi.org/10.1017/jog.2018.60

Sun, D., Sardahi, Y., Chen, G. S., Zatar, W., Nghiem, H., & Yang, Z. (2025). A Study on Nonlinear Vibrations in the Impact-Echo Method for Void Flaw Detection in Solids, Vibration, 8(66), 1-11. https://doi.org/10.3390/vibration8040066

Takayama, J., Oharaa, Y., & Sun, W. (2022). Nondestructive evaluation of air voids in concrete structures using microwave radar technique. SICE Journal of Control, Measurement, and System Integration, 15(1), 36–47. https://doi.org/10.1080/18824889.2021.2019968

Teshale, E. Z., Hoegh, K., Dai, S., Giessel, R., & Turgeon, C. (2020). Ground penetrating radar sensitivity to marginal changes in asphalt mixture composition. Journal of Testing and Evaluation, 48(3), 2295-2310. https://doi.org/10.1520/JTE20190486

Thitimakorn, T., Kampananon, N., Jongjaiwanichkit, N., & Kupongsak, S. (2016). Subsurface void detection under the road surface using ground penetrating radar (GPR), a case study in the Bangkok metropolitan area, Thailand. International Journal Geo-Engineering, 7(1), 1-9. https://doi.org/10.1186/s40703-016-0017-8

Tian, X., Du, Y., & Zhao, W. (2019). Detection and identification of mortar void in the ballastless track of high-speed railway based on transient impact characteristics. Journal of Vibration and Shock, 38(18), 148–153.

Tomita, K., & Chew, M. Y. L. (2022). A review of infrared thermography for delamination detection on infrastructures and buildings. Sensors, 22(2), 1-42. https://doi.org/10.3390/s22020423

Wang, H., Wu, Y., Chen, C., & Guo, Y. (2023). In-site health monitoring of cement concrete pavements based on optical fiber sensing technology. Journal of Road Engineering, 3(1),113-123.https://doi.org/10.1016/j.jreng.2022.09.003

Yong, Y., Junwei, L., Rongzhe, L., Xiushu, T., & Weigang, Z. (2020). Analysis on edge estimation of functional layer defect in ballastless track based on Burg power spectrum. Journal of Vibration and Shock, 39(10),1–6.

Yu, Q., Li, Y., Luo, T., Zhang, J., Tao, L., Zhu, X., Zhang, Y., Luo, L., & Xu, X. (2023). Cement pavement void detection algorithm based on GPR signal and continuous wavelet transform method. Scientific Reports,13(1),19710. https://doi.org/10.1038/s41598-023-46752-2

Zhang, J., Gao, X., & Yu, L. (2020). Improvement of viscosity-modifying agents on air-void system of vibrated concrete. Construction and Building Materials, 239(117843), 1-12. https://doi.org/10.1016/j.conbuildmat.2019.117843

Zhang, J., Peng, L., Wen, S., & Huang, S. (2024). A review on concrete structural properties and damage evolution monitoring techniques.Sensors,24(2),1-29. https://doi.org/10.3390/s24020620