Estimating Monthly Runoff Using Reanalysis Precipitation Data for Ungauged Areas in Kanchanaburi Province, Thailand

Main Article Content

Apirak Pinpipat
Polpech Samanmit
Nuttaya Nam-in
Chuphan Chompuchan

Abstract

Estimating runoff for small-scale water resource development projects requires rainfall data from nearby stations. However, rain gauge stations are often sparse in mountainous areas. To address this issue, reanalysis precipitation data has been introduced for data-scarce regions. This study evaluates the performance of the WorldClim and CHELSA data by comparing them with observations from nine rain gauges in Kanchanaburi Province from 2000 to 2018. Results indicate that both datasets exhibit a strong correlation with gauges data, with CHELSA showing a slightly higher correlation coefficient (r=0.84) than WorldClim (r=0.79). Regarding accuracy, CHELSA demonstrates very good performance with
a slight positive bias (PBIAS=+4.16%), while WorldClim shows satisfactory performance but with
a considerably higher positive bias (PBIAS=+22.64%). Runoff estimates for six small-scale water resource projects, calculated using these reanalysis precipitation datasets, differ from those derived from gauge observations, with relative differences ranging from -28.82% to +100.68% for WorldClim and from -12.64% to +87.39% for CHELSA. This study highlights the potential of reanalysis precipitation data for hydrological applications in ungauged areas, supporting the planning and design of reservoir capacity and irrigable areas.

Article Details

Section
Engineering

References

ไพโรจน์ เกรียงศิริ และ จานุวัตร เลิศศิลป์เจริญ. (2538). แนวทางการศึกษาการวางโครงการแหล่งน้ำขนาดเล็กของภาคเหนือประเทศไทยโดยใช้โปรแกรมสเปรทชีท. วิศวกรรมสาร มก., 9(25), 75-114.

Baatz, R., Hendricks Franssen, H. J., Euskirchen, E., Sihi, D., Dietze, M., Ciavatta, S., Fennel, K., Beck, H., De Lannoy, G., Pauwels, V. R. N., Raiho, A., Montzka, C., Williams, M., Mishra, U., Poppe, C., Zacharias, S., Lausch, A., Samaniego, L., Van Looy, K., Vereecken, H. (2021). Reanalysis in Earth System Science: Toward Terrestrial Ecosystem Reanalysis. Reviews of Geophysics, 59(3), 1–39. https://doi.org/10.1029/2020RG000715

Bosilovich, M. G., Chen, J., Robertson, F. R., & Adler, R. F. (2008). Evaluation of global precipitation in reanalyses. Journal of Applied Meteorology and Climatology, 47(9), 2279–2299. https://doi.org/10.1175/2008JAMC1921.1

Ceglar, A., Toreti, A., Balsamo, G., & Kobayashi, S. (2017). Precipitation over monsoon Asia: A comparison of reanalyses and observations. Journal of Climate, 30(2), 465–476. https://doi.org/10.1175/JCLI-D-16-0227.1

de Oliveira-Júnior, J. F., Correia Filho, W. L. F., de Barros Santiago, D., de Gois, G., da Silva Costa, M., da Silva Junior, C. A., Teodoro, P. E., & Freire, F. M. (2021). Rainfall in Brazilian Northeast via in situ data and CHELSA product: mapping, trends, and socio-environmental implications. Environmental Monitoring and Assessment, 193(5), 1–19. https://doi.org/10.1007/s10661-021-09043-9

Delle Monache, D., Martino, G., Chiocchio, A., Siclari, A., Bisconti, R., Maiorano, L., & Canestrelli, D. (2024). Mapping local climates in highly heterogeneous mountain regions: Interpolation of meteorological station data vs. downscaling of macroclimate grids. Ecological Informatics, 82, 102674. https://doi.org/10.1016/j.ecoinf.2024.102674

Dumont, M., Saadi, M., Oudin, L., Lachassagne, P., Nugraha, B., Fadillah, A., Bonjour, J.-L., Muhammad, A., Hendarmawan, Dörfliger, N., & Plagnes, V. (2022). Assessing rainfall global products reliability for water resource management in a tropical volcanic mountainous catchment. Journal of Hydrology: Regional Studies, 40, 101037. https://doi.org/10.1016/j.ejrh.2022.101037

Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315. https://doi.org/10.1002/joc.5086

Fierke, J., Joelson, N. Z., Loguercio, G. A., Putzenlechner, B., Simon, A., Wyss, D., Kappas, M., & Walentowski, H. (2024). Assessing uncertainty in bioclimatic modelling: a comparison of two high-resolution climate datasets in northern Patagonia. Regional Environmental Change, 24(3), 110. https://doi.org/10.1007/s10113-024-02278-5

Garibay, V. M., Gitau, M. W., Kiggundu, N., Moriasi, D., & Mishili, F. (2021). Evaluation of Reanalysis Precipitation Data and Potential Bias Correction Methods for Use in Data-Scarce Areas. Water Resources Management, 35(5), 1587–1602. https://doi.org/10.1007/s11269-021-02804-8

Hemp, A., & Hemp, J. (2024). Weather or not—Global climate databases: Reliable on tropical mountains? PLOS ONE, 19, 0299363. https://doi.org/10.1371/journal.pone.0299363

Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., Zimmermann, N. E., Linder, H. P., & Kessler, M. (2017). Climatologies at high resolution for the earth’s land surface areas. Scientific Data, 4, 170122. https://doi.org/10.1038/sdata.20

122

Kim, I. W., Oh, J. H., Woo, S. M., & Kripalani, R. H. (2019). Evaluation of precipitation extremes over the Asian domain: observation and modelling studies. Climate Dynamics, 52(3), 1317–1342. https://doi.org/10.1007/s00382-018-4193-4

McClean, F., Dawson, R., & Kilsby, C. (2023). Intercomparison of global reanalysis precipitation for flood risk modelling. Hydrology and Earth System Sciences, 27(2), 331–347. https://doi.org/10.5194/hess-27-331-2023

Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model Evaluation Guidelines for systematic quantification of accuracy in watershed simulations. transactions of the ASABE, 50(3), 885–900. https://doi.org/10.13031/2013.23153

Osejo, B. B., Vargas, T. B., & Martinez, J. A. (2019). Spatial distribution of precipitation and evapotranspiration estimates from WorldClim and Chelsa datasets: Improving long-term water balance at the watershed-scale in the Urabá region of Colombia. International Journal of Sustainable Development and Planning, 14(2), 105–117. https://doi.org/10.2495/SDP-V14-N2-105-117

Salvacion, A. R., Magcale-Macandog, D. B., Cruz, P. C. S., Saludes, R. B., Pangga, I. B., & Cumagun, C. J. R. (2018). Evaluation and spatial downscaling of CRU TS precipitation data in the Philippines. Modeling Earth Systems and Environment, 4(3), 891–898. https://doi.org/10.1007/s40808-018-0477-2

Stockham, A. J., Schultz, D. M., Fairman, J. G., & Draude, A. P. (2018). Quantifying the Rain-shadow Effect: Results from the Peak District, British Isles. Bulletin of the American Meteorological Society, 99(4), 777–790. https://doi.org/10.1175/BAMS-D-17-0256.1

Subyani A. M. (2004). Geostatistical study of annual and seasonal mean rainfall patterns in southwest Saudi Arabia. Hydrological Sciences Journal, 49(5), 803–817. https://doi.org/10.1623/hysj.49.5.803.55137

Sun, Q., Miao, C., Duan, Q., Ashouri, H., Sorooshian, S., & Hsu, K. L. (2018). A Review of Global Precipitation Data Sets: Data Sources, Estimation, and Intercomparisons. Reviews of Geophysics, 56(1), 79–107. https://doi.org/10.1002/2017RG000574

Wang, G. F., Zhang, X. W., & Zhang, S. Q. (2019). Performance of Three Reanalysis Precipitation Datasets over the Qinling-Daba Mountains, Eastern Fringe of Tibetan Plateau, China. Advances in Meteorology, 2019(1), 7698171. https://doi.org/10.1155/2019/7698171

Wang, X. L., Feng, Y., Chan, R., & Isaac, V. (2016). Inter-comparison of extra-tropical cyclone activity in nine reanalysis datasets. Atmospheric Research, 181, 133–153. https://doi.org/10.1016/j.atmosres.2016.06.010

Wanzala, M. A., Ficchi, A., Cloke, H. L., Stephens, E. M., Badjana, H. M., & Lavers, D. A. (2022). Assessment of global reanalysis precipitation for hydrological modelling in data-scarce regions: A case study of Kenya. Journal of Hydrology: Regional Studies, 41, 101105. https://doi.org/10.1016/j.ejrh.2022.101105

Zhan, W., Guan, K., Sheffield, J., & Wood, E. F. (2016). Depiction of drought over sub-Saharan Africa using reanalyses precipitation data sets. Journal of Geophysical Research: Atmospheres, 121(18), 10,510-555,574. https://doi.org/10.1002/2016JD024858