Development of an Exercise Machine with the Friction Principle

Main Article Content

Rotchana Prapainop
Attaphon Chaimanatsakun
Kamin Bunsri
Dollapha Pasokchat

Abstract

This study presents the development of an exercise machine based on the principle of friction, designed under product design patent number 86670. The machine, resembling a vehicle with wheels, features a smooth rear surface for pushing and ropes on both sides for pulling. The research focuses on the design, construction, and testing of the machine, without involving a human sample group. The machine’s empty weight is 21 kg, with additional weighted bags ranging from 5 to 50 kg. The construction process includes building a steel frame, upholstering it, and attaching wheels. The experiment measures the forces required to push and pull the machine using force gauges. These measurements, including normal forces ranging from 206.0 N to 696.5 N, were conducted on two different floor surfaces: vinyl and carpeted. Results indicate that, on the vinyl floor, the average forces required to initiate movement at a normal force of 696.5 N were 32.04 N for pushing and 31.56 N for pulling. On the carpeted floor under the same normal force, the average forces required were 56.1 N and 45.0 N for pushing and pulling, respectively. These findings highlight the differences in force requirements across floor types and between pushing and pulling actions. Therefore, the proposed exercise machine is expected to be suitable for low-intensity exercise by utilizing normal forces and surfaces tailored to the user’s needs.

Article Details

Section
Science and Health Science & Sport

References

กรมพลศึกษา (2539). เอกสารงานทดสอบสมรรถภาพทางกาย. ต้นอ้อ.

รจนา ประไพนพ และ อรรถพล ชัยมนัสกุล (2565). สิทธิบัตรการออกแบบผลิตภัณฑ์เลขที่ 86670 เครื่องออกกำลังกาย. มหาวิทยาลัยเกษตรศาสตร์.

สิทธิชัย แสงอาทิตย์ (2555). เอกสารประกอบการสอนสถิตยศาสตร์วิศวกรรม (Engineering Statics). มหาวิทยาลัยเทคโนโลยีสุรนารี.

Abdelbary, A., & Chang, L. (2023). 4 - Friction and wear. In A. Abdelbary & L. Chang (Eds.), Principles of Engineering Tribology (pp. 127-206. Academic Press. https://doi.org/10.1016/B978-0-323-99115-5.00011-6

Blau, P. J. (2001). The significance and use of the friction coefficient. Tribology International, 34 (9), 585-591. https://doi.org/https://doi.org/10.1016/S0301-679X(01)00050-0

Černe, T., Kamnik, R., Vesnicer, B., Žganec Gros, J., & Munih, M. (2013). Differences between elite, junior and non-rowers in kinematic and kinetic parameters during ergometer rowing. Human Movement Science, 32(4), 691-707. https://doi.org/10.1016/j.humov.2012.11.006

Chua, J. J. C., Fuss, F. K., & Subic, A. (2010). Rolling friction of a rugby wheelchair. Procedia Engineering, 2(2), 3071-3076. https://doi.org/https://doi.org/10.1016/j.proeng.2010.04.113

De las Casas, H., Kleis, K., Richter, H., Sparks, K., & van den Bogert, A. (2019). Eccentric training with a powered rowing machine. Medicine in Novel Technology and Devices,2,100008. https://doi.org/10.1016/j.medntd.2019.100008

Gao, X., Chen, Y., & Cheng, P. (2024). Unlocking the potential of exercise: harnessing myokines to delay musculoskeletal aging and improve cognitive health. Frontiers in physiology, 15, 1338875. https://doi.org/10.3389/fphys.2024.1338875

Gao, X., Zhuang, Y., & Liu, S. (2021). High-speed 3D digital image correlation for measuring tire rolling resistance coefficient. Measurement, 171, 108830. https://doi.org/10.1016/j.measurement.2020.108830

Groth,S. W., & David, T. (2008). New mothers' views of weight and exercise. MCN: The American Journal of Maternal/Child Nursing, 33(6), 364-370. https://doi.org/10.1097/01.Nmc.0000341257.26169.30

Ji, C., Yang, J., Lin, L., & Chen, S. (2022). Physical Exercise Ameliorates Anxiety, Depression and Sleep Quality in College Students: Experimental Evidence from Exercise Intensity and Frequency. Behavioral Science, 12(3), 61. https://doi.org/10.3390/bs12030061

Kramer, A. (2020). An Overview of the Beneficial Effects of Exercise on Health and Performance. In J. Xiao (Ed.), Physical Exercise for Human Health (pp. 3-22). Springer Nature Singapore. https://doi.org/10.1007/978-981-15-1792-1_1

Li, J., Zhang, Y., Shang, Q., & Wang, T. (2024). Experimental study on the static rolling friction coefficient of a flat-roller-flat configuration considering surface roughness. Structures, 65, 106711. https://doi.org/10.1016/j.istruc.2024.106711

Perrey, S., & Ferrari, M. (2018). Muscle Oximetry in Sports Science: A Systematic Review. Sports Medicine, 48(3), 597-616. https://doi.org/10.1007/s40279-017-0820-1

Schultz, A. B., Andersson, G. B. J., Ortengren, R., Haderspeck, K. A., & Nachemson, A. L. (1982). Loads on the lumbar spine. Validation of a biomechanical analysis by measurements of intradiscal pressures and myoelectric signals. The Journal of bone and joint surgery, 64(5), 713-720.

Severinsen, M. C. K., & Pedersen, B. K. (2020). Muscle–Organ Crosstalk: The Emerging Roles of Myokines. Endocrine Reviews, 41(4), 594-609. https://doi.org/10.1210/endrev/bnaa016