Potential of Phytolith Accumulation in Thai Rice Cultivars
Main Article Content
Abstract
Phytoliths are non-crystalline amorphous silica and are considered non-labile carbon, offering long-term carbon sequestration. This study aimed to evaluate phytolith accumulation in the leaf and root tissues of various Thai rice cultivars and analyze the relationship with the expression levels of two groups of silicon transport genes: silicon influx transporter genes (OsLsi1 and OsLsi6) and silicon efflux transporter genes (OsLsi2 and OsLsi3). It demonstrated that phytolith accumulation in root tissues was significantly higher than in leaf blades and sheaths (p<0.05). The highest phytolith accumulation was observed in RD51 and RD43, with values of 146.10 and 120.03 mg/gDW, respectively. The total phytolith content of RD51 was 2.01 times greater than that of KDML105. Additionally, a positive correlation was detected between phytolith content and the expressions of OsLsi2 and OsLsi3 (r = 0.49*). OsLsi2 and OsLsi3 enable silicon transfer between cells, allowing for silicon transport within the plant and its storage in the form of phytoliths.
Article Details
References
ศิริพร ศรีภิญโญวณิชย์, มาลินี ศรีอริยนันท์, วาสินี พงษ์ประยูร. (2565). รายงานการวิจัยการศึกษาปฏิสัมพันธ์เชิงระบบของการอยู่ร่วมกันระหว่างข้าวและจุลินทรีย์รอบรากต่อผลผลิตข้าวและการปลดปล่อยก๊าซมีเทน. มหาวิทยาลัยบูรพา.
Blinnikov, M. S., & Yost, C. L. (2023). Phytoliths. In Reference Module in Earth Systems and Environmental Sciences. Elsevier.
Davamani, V., Sangeetha Piriya, R., Rakesh, S. S., Parameswari, E., Paul Sebastian, S., Kalaiselvi, P., Santhi, R. (2022). Phytolith-occluded carbon sequestration potential of oil palm plantation in Tamil Nadu. ACS omega, 7(3), 2809-2820.
Dong, L., Yang, T., Ma, L., Li, R., Feng, Y., & Li, Y. (2024). Silicon fertilizer addition can improve rice yield and lodging traits under reduced nitrogen and increased density conditions. Agronomy, 14(3), 464. https://doi.org/10.3390/agronomy14030464
Hodson, M. J. (2016). The development of phytoliths in plants and its influence on their chemistry and isotopic composition. Implications for palaeoecology and archaeology. Journal of Archaeological Science, 68, 62-69. https://doi.org/10.1016/j.jas.2015.09.002.
Huang, S., Yamaji, N., Sakurai, G., Mitani‐Ueno, N., Konishi, N., & Ma, J. F. (2022). A pericycle‐localized silicon transporter for efficient xylem loading in rice. New phytologist, 234(1), 197-208.
IBM Corporation. (2020). IBM SPSS Statistics for Windows (Version 27.0) [Computer software]. IBM.
Li, Z., Song, Z., Parr, J. F., & Wang, H. (2013). Occluded C in rice phytoliths: implications to biogeochemical carbon sequestration. Plant and Soil, 370(1), 615-623. https://doi.org/10.1007/s11104-013-1661-9.
Ma, J. F., & Yamaji, N. (2006). Silicon uptake and accumulation in higher plants. Trends in Plant Science, 11(8), 392-397. https://doi.org/10.1016/j.tplants.2006.06.007
Ma, J. F., & Yamaji, N. (2015). A cooperative system of silicon transport in plants. Trends in plant science, 20(7), 435-442.
Ma, J. F., Yamaji, N., Mitani, N., Tamai, K., Konishi, S., Fujiwara, T., Katsuhara, M., & Yano, M. (2007). An efflux transporter of silicon in rice. Nature, 448(7150), 209–212. https://doi.org/10.1038/nature05964.
Nadeau, K. C., Agache, I., Jutel, M., Annesi Maesano, I., Akdis, M., Sampath, V., D'Amato, G., Cecchi, L., Traidl-Hoffmann, C., & Akdis, C. A. (2022). Climate change: A call to action for the United Nations. Allergy, 77(4), 1087–1090. https://doi.org/10.1111/all.15079
Nawaz, M. A., Zakharenko, A. M., Zemchenko, I. V., Haider, M. S., Ali, M. A., Imtiaz, M., Chung, G., Tsatsakis, A., Sun, S., & Golokhvast, K. S. (2019). Phytolith Formation in Plants: From Soil to Cell. Plants, 8(8), 249. https://doi.org/10.3390/plants8080249
Parr, J. F., & Sullivan, L. A. (2005). Soil carbon sequestration in phytoliths. Soil Biology and Biochemistry, 37(1), 117-124.
Parr, J. F., & Sullivan, L. A. (2014). Comparison of two methods for the isolation of phytolith occluded carbon from plant material. Plant and Soil, 374(1-2), 45-53.
Puppe, D., Kaczorek, D., Buhtz, C., & Schaller, J. (2023). The potential of sodium carbonate and Tiron extractions for the determination of silicon contents in plant samples—A method comparison using hydrofluoric acid digestion as reference. Frontiers in Environmental Science, 11. https://doi:10.3389/fenvs.2023.1145604
Puppe, D., & Leue, M. (2018). Physicochemical surface properties of different biogenic silicon structures: Results from spectroscopic and microscopic analyses of protistic and phytogenic silica. Geoderma, 330(15), 212-220. https://doi.org/10.1016/j.geoderma.2018.06.001
Sharma, R., Kumar, V., & Kumar, R. (2019). Distribution of phytoliths in plants: A review. Geology, ecology, and landscapes, 3(2), 123-148. https://doi.org/10.1080/24749508.2018.1522838
Song, X., Chen, X., Zhou, G., Jiang, H., & Peng, C. (2017). Observed high and persistent carbon uptake by Moso bamboo forests and its response to environmental drivers. Agricultural and forest meteorology, 247(15), 467-475. https://doi.org/10.1016/j.agrformet.2017.09.001
Sun, X., Liu, Q., Zhao, G., Chen, X., Tang, T., & Xiang, Y. (2017). Comparison of phytolith-occluded carbon in 51 main cultivated rice (Oryzasativa) cultivars of China. RSC Advances, 7(86), 54726-54733.
Tan, L., Fan, X., Yan, G., Peng, M., Zhang, N., Ye, M., Gao, Z., Song, A., Nikolic, M., & Liang, Y. (2021). Sequestration potential of phytolith occluded carbon in China's paddy rice (Oryza sativa L.) systems. Science of The Total Environment, 774, 145696. https://doi.org/10.1016/j.scitotenv.2021.145696
Tang, X., Zhao, X., Bai, Y., Tang, Z., Wang, W., Zhao, Y., Wu, B. (2018). Carbon pools in China’s terrestrial ecosystems: New estimates based on an intensive field survey. Proceedings of the National Academy of Sciences, 115(16), 4021-4026.
Tang, X., Zhao, X., Bai, Y., Tang, Z., Wang, W., Zhao, Y., Wan, H., Xie, Z., Shi, X., Wu, B., Wang, G., Yan, J., Ma, K., Du, S., Li, S., Han, S., Ma, Y., Hu, H., He, N., Zhou, G. (2018). Carbon pools in China’s terrestrial ecosystems: New estimates based on an intensive field survey. Proceedings of the National Academy of Sciences, 115(16), 4021-4026. https://doi.org/10.1073/pnas.1700291115
Wang, L., & Sheng, M. (2022). Phytolith occluded organic carbon in Fagopyrum (Polygonaceae) plants: Insights on the carbon sink potential of cultivated buckwheat planting. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.1014980
Yamaji, N., Mitatni, N., & Ma, J. F. (2008). A transporter regulating silicon distribution in rice shoots. Plant Cell, 20(5), 1381-1389. https://doi:10.1105/tpc.108.059311
Yang, X., Song, Z., Liu, H., Van Zwieten, L., Song, A., Li, Z., Hao, Q., Zhang, X., & Wang, H. (2018). Phytolith accumulation in broadleaf and conifer forests of northern China: Implications for phytolith carbon sequestration. Geoderma, 312, 36-44. https://doi.org/10.1016/j.geoderma.2017.10.005
Zhang, X., Song, Z., Hao, Q., Yu, C., Liu, H., Chen, C., Müller, K., & Wang, H. (2020). Storage of soil phytoliths and phytolith-occluded carbon along a precipitation gradient in grasslands of northern China. Geoderma, 364, 114200. https://doi.org/10.1016/j.geoderma.2020.114200