Application of the Fuzzy VIKOR Method for Decision-Making in Bamboo Product Development
DOI:
https://doi.org/10.14456/jeit.2024.26Keywords:
Fuzzy VIKOR, Multi-Criteria Decision Making, Bamboo Product DevelopmentAbstract
This research presents the application of the Fuzzy VIKOR method as a multi-criteria decision-making (MCDM) technique to determine the most suitable approach for developing bamboo-based products. The study began by defining five decision criteria: production cost (C1) marketing (C2) government support research and innovation (C3) collaboration between communities and entrepreneurs (C4) and environmental sustainability (C5). Eight alternatives were considered, including household products (A1), furniture and decorative items (A2), tools and equipment (A3) handicrafts and souvenirs (A4) eco-friendly products (A5) construction products (A6) health and beauty products (A7) and food and beverage products (A8). The evaluation was based on input from five experts. The results revealed that Alternative (A5) was the best option, with Si = 0.00, Ri = 0.00, Qi = 0.00, indicating the closest proximity to the ideal solution. Alternative (A8) had values of Si = 0.97, Ri =1.34, Qi = 0.36, while Alternative (A7) had values of Si = 0.81, Ri = 1.66, Qi = 0.45, respectively. The least suitable alternative was Alternative A6 had values of Si = 0.97, Ri = 3.79, Qi = 1.00 the highest values observed. This research demonstrates its effective application in decision-making when selecting complex approaches to bamboo product development.
References
[1] S. Seuring and M. Müller, "From a literature review to a conceptual framework for sustainable supply chain management," Journal of Cleaner Production, vol. 16, no. 15, pp. 1699–1710, 2008.
[2] รักพงษ์ วงศ์รอด, "ความต้องการการส่งเสริมการผลิตไผ่ตงของเกษตรกรในอำเภอท่าตะเกียบ จังหวัดฉะเชิงเทรา," วิทยานิพนธ์ปริญญาเกษตรศาสตรมหาบัณฑิต,มหาวิทยาลัยสุโขทัยธรรมาธิราช, 2562.
[3] R. Shankar and K. Ghosh, “A systematic review on supply chain management in prefabricated house-building research.” Buildings, 12(1), 40, 2022.
[4] S. Opricovic and G. H. Tzeng, "Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS," European Journal of Operational Research, vol. 156, no. 2, pp. 445–455, 2004.
[5] R. Rostamzadeh, K. Govindan, A. Esmaeili, and M. Sabaghi, "Application of fuzzy VIKOR for evaluation of green supply chain management practices," Ecological Indicators, vol. 49, pp. 188–203, 2015.
[6] R. M. Zulqarnain, H. L. Dai, W. X. Ma, I. Siddique, S. Askar, and H. Naveed, "Supplier selection in green supply chain management using correlation-based TOPSIS in a q-rung orthopair fuzzy soft environment," Heliyon, vol. 10, no. 1, e20924, 2024.
[7] MCDM Software - Fuzzy VIKOR Tool. Available: https://mcdmaker-software.web.app/app.html. [Accessed: Dec. 14, 2024].
[8] J. Liang and P. Liu, "Shared manufacturing service evaluation based on intuitionistic fuzzy VIKOR," Heliyon, vol. 10, no. 8, e22024, 2024.
[9] A. Shemshadi, H. Shirazi, M. Toreihi, and M. J. Tarokh, "A fuzzy VIKOR method for supplier selection based on entropy measure for objective weighting," Expert Systems with Applications, vol. 38, no. 10, pp. 12160–12167, 2011.
[10] M. Gul, E. Celik, N. Aydin, A. T. Gumus, and A. F. Guneri, "A state of the art literature review of VIKOR and its fuzzy extensions on applications," Applied Soft Computing, vol. 46, pp. 60–89, 2016.
[11] A. K. Sahu, S. Datta, and S. S. Mahapatra, "Evaluation and selection of resilient suppliers in fuzzy environment: Exploration of fuzzy-VIKOR," Benchmarking: An International Journal, vol. 23, no. 3, pp. 651–673, 2016.
[12] A. Mardani, E. K. Zavadskas, K. Govindan, A. Amat Senin, and A. Jusoh, "VIKOR technique: A systematic review of the state of the art literature on methodologies and applications," Sustainability, vol. 8, no. 1, p. 37, 2016.
[13] M. Akram, C. Kahraman, and K. Zahid, "Group decision-making based on complex spherical fuzzy VIKOR approach," Knowledge-Based Systems, vol. 216, p. 106793, 2021.
[14] A. Sain, A. Gaur, P. Somani, J. S. Khichad, and G. Balotiya, "Characterization and evaluation of bamboo species for construction applications incorporating TOPSIS, AHP and VIKOR," Arabian Journal for Science and Engineering, pp. 1–17, 2024.
[15] A. Syidanova, H. Gokcekus, and D. Uzun Ozsahin, "Superior types of bamboo as a construction material with MCDM methods," in Application of Multi-Criteria Decision Analysis in Environmental and Civil Engineering, pp. 65–86, 2021.
[16] Y. A. Solangi, S. A. A. Shah, H. Zameer, M. Ikram, and B. O. Saracoglu, "Assessing the solar PV power project site selection in Pakistan: based on AHP-fuzzy VIKOR approach," Environmental Science and Pollution Research, vol. 26, pp. 30286–30302, 2019.
[17] P. Nasawat, S. Talangkun, S. Arunyanart, and N. Wichapa, "Selection of suitable rice weevil disinfestation method using hybrid FAHP-FTOPSIS," Pathumwan Academic Journal, 10(29), 65-80, 2020.
[18] N. Wichapa, A. Choompol, and T. Sudsuansee, "Using the hybrid DEA-TOPSIS technique for selecting the suitable biomass materials for processing into fuel briquettes," The Journal of Industrial Technology, vol. 15, no. 1, pp. 63–80, 2019.
[19] B. Wang, J. Song, J. Ren, K. Li, and H. Duan, "Selecting sustainable energy conversion technologies for agricultural residues: A fuzzy AHP-VIKOR based prioritization from life cycle perspective," Resources, Conservation and Recycling, vol. 142, pp. 78–87, 2019.
[20] C.-N. Wu, H.-P. Fan, H.-P. Ho, V. T. Nguyen, V. T. Nguyen, and A. S. Ansari, "A model for selecting a biomass furnace supplier based on qualitative and quantitative factors," Computers, Materials & Continua, vol. 69, no. 2, pp. 2097–2115, 2021.
[21] Mojaver, S. Khalilarya, and A. Chitsaz, "Multi-objective optimization and decision analysis of a system based on biomass fueled SOFC using couple method of entropy/VIKOR," Energy Conversion and Management, vol. 203, p. 112260, 2020.
[22] Priyanka and Rajneesh, "A fuzzy VIKOR model for selection of optimal biomass usage in India," in 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), Jul. 2016, pp. 1–6.
[23] N. Wichapa, P. Nasawat, N. Kanchanaruangrong, and A. Choompol, "A combined DEAV-BWM approach for effective evaluation and ranking of biomass materials in charcoal briquette production," MethodsX, p. 103075, 2024.
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2024 Journal of Engineering and Industrial Technology, Kalasin University

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
ลิขสิทธิ์ของวารสาร
เนื้อหาและข้อมูลในบทความที่ลงตีพิมพ์ในวารสารศูนย์ดัชนีการอ้างอิงวารสารไทย ถือเป็นข้อคิดเห็นและความรับผิดชอบของผู้เขียนบทความโดยตรงซึ่งกองบรรณาธิการวารสาร ไม่จำเป็นต้องเห็นด้วย หรือร่วมรับผิดชอบใด ๆ
บทความ ข้อมูล เนื้อหา รูปภาพ ฯลฯ ที่ได้รับการตีพิมพ์ในวารสารศูนย์ดัชนีการอ้างอิงวารสารไทย ถือเป็นลิขสิทธิ์ของวารสารศูนย์ดัชนีการอ้างอิงวารสารไทย หากบุคคลหรือหน่วยงานใดต้องการนำทั้งหมดหรือส่วนหนึ่งส่วนใดไปเผยแพร่ต่อหรือเพื่อกระทำการใด จะต้องได้รับอนุญาตเป็นลายลักอักษรจากวารสารศูนย์ดัชนีการอ้างอิงวารสารไทยก่อนเท่านั้น