LINEARIZATION OF SECOND-ORDER ORDINARY DIFFERENTIAL EQUATIONS BY USING A GENERALIZED LINEARIZING TRANSFORMATION
Keywords:
Linearization problem, Generalized linearizing transformation, Nonlinear second-order ordinary differential equationsAbstract
This research aimed to study the linearization problem of nonlinear second-order ordinary differential equations by using a generalized linearizing transformation to reduce the equation into the linear form . The study establishes the necessary and sufficient conditions for such a transformation, presents a procedure to determine the transformation functions and the coefficients of the linear equation, and provides examples of obtaining solutions to illustrate the proposed concepts.
References
Lie, S. (1883). Klassifikation und integration von gewöhnlichen differentialgleichungen zwischen x, y, die eine gruppe von transformationen gestatten. III. Archiv for Matematik og Naturvidenskab, 8(4), 371-427.
Liouville, R. (1889). Sur les Invariantes de Certaines Equations. J. de lÉcole Poly technique, 59, 7-88.
Tresse, A. M. (1896). Détermination des Invariants Ponctuels de lÉquation Différentielle Ordinaire du Second Order y^''=f(x,y,y^' ). Preisschriften der fürstlichen Jablonowski schen Geselschaft XXXII. Leipzig: S.Herzel.
Cartan, E. (1924). Sur les variétés à connexion projective. Bull. Soc. Math. France, 52, 205-241.
Durate, L. G. S., Moreira, I. C., & Santos, F. C. (1994). Linearisation under nonpoint transformations. Journal of Physics A: Mathematical and General, 27(19), L739-L743.
Nakpim, W., & Meleshko, S. V. (2010). Linearization of second-order ordinary differential equations by generalized Sundman transformations. SIGMA, 6(51), 1-11.
Chandrasekar, V. K., Senthilvelan, M., & Lakshmanan, M. (2006). A unification in the theory of linearization of second-order nonlinear ordinary differential equations. Journal of Physics A: Mathematical and General, 39(3), L69–L76.
Voraka, P., Suksern, S., & Donjiwprai, N. (2020). Linearizability of Nonlinear Second-Order Ordinary Differential Equations by Using a Generalized Linearizing Transformation. IAENG International Journal of Applied Mathematics, 50(4), 845-852.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 ศุภกิจ ธรรมขันธ์, กิตติ ศศิวิมลลักษณ์

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
