DISCRETE LINEAR AND COMBINATORIAL CONVOLUTIONS
Keywords:
Discrete linear, Combinatorial convolutions , Linear recurrence relationAbstract
This article present the discrete linear and combinatorial convolutions with the purpose of explaining the sum of generalized arithmetic-geomtric series that corresponds to the linear recurrence relation and combinatorial convolutions can be summarized as follows
The sum of generalized arithmetic-geomtric series is given by the formula:
and
which corresponds to the recurrence relation and combinatorial convolutions as follows
and
References
กำจร มุณีแก้ว. (2563). ผลบวกของอนุกรมเลขคณิต-เรขาคณิตที่วางนัยทั่วไป. วารสารก้าวทันโลกวิทยาศาสตร์. คณะวิทยาศาสตร์และเทคโนโลยี, 19(2), 1-11.
Cîrnu MI. (2011). Determinantal formulas for sum of generalized arithmetic-geometric series. De La Asociacion Matematica Venezolana, 18(1), 25-38.
Kumaresan, S. (2020). Cauchy-Mertens. Retrieved from https://www.youtube.com/Cauchy-Mertens/. Whitman College. (2024). Newton’s Binomial Theorem. Retrieved from https://www.whitman. edu/Newton’ s Binomial Theorem/.
Wikipedia. (2024). Mertens’ Theorem. Retrieved from https://en.wikipedia.org/Mertens’ Theorem/.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 กำจร มุณีแก้ว, Zithimawor Bunma

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
