DISCRETE LINEAR AND COMBINATORIAL CONVOLUTIONS

Authors

  • Kumjorn Muneekaew Program in Educational Measurement and Teaching Mathematics, Department of Education, Bansomdejchaopraya Rajabhat University
  • Zithimawor Bunma -

Keywords:

Discrete linear, Combinatorial convolutions , Linear recurrence relation

Abstract

This article present the discrete linear and combinatorial convolutions with  the  purpose of  explaining  the sum of  generalized  arithmetic-geomtric series that corresponds to the linear recurrence relation and combinatorial convolutions can be summarized as follows

The sum of generalized arithmetic-geomtric series is given by the formula:

equation and equation

which corresponds to the recurrence relation and combinatorial convolutions as follows

equation and equation

References

กำจร มุณีแก้ว. (2563). ผลบวกของอนุกรมเลขคณิต-เรขาคณิตที่วางนัยทั่วไป. วารสารก้าวทันโลกวิทยาศาสตร์. คณะวิทยาศาสตร์และเทคโนโลยี, 19(2), 1-11.

Cîrnu MI. (2011). Determinantal formulas for sum of generalized arithmetic-geometric series. De La Asociacion Matematica Venezolana, 18(1), 25-38.

Kumaresan, S. (2020). Cauchy-Mertens. Retrieved from https://www.youtube.com/Cauchy-Mertens/. Whitman College. (2024). Newton’s Binomial Theorem. Retrieved from https://www.whitman. edu/Newton’ s Binomial Theorem/.

Wikipedia. (2024). Mertens’ Theorem. Retrieved from https://en.wikipedia.org/Mertens’ Theorem/.

Downloads

Published

2024-12-26

How to Cite

Muneekaew, K. . ., & Bunma, Z. (2024). DISCRETE LINEAR AND COMBINATORIAL CONVOLUTIONS. Journal of Science and Technology Thonburi University, 8(2), 1–11. retrieved from https://ph03.tci-thaijo.org/index.php/trusci/article/view/3213