Digital Transformation Activities in Geological Survey of Japan, AIST: Development of Volcanic Hazards Information System

Authors

  • Shinji Takarada Geological Survey of Japan, AIST
  • Joel Bandibas Geological Survey of Japan, AIST
  • Yuhki Kohno Geological Survey of Japan, AIST
  • Shuho Maitani Meiji University
  • Emi Kariya Geological Survey of Japan, AIST
  • Yasuaki Kaneda Ibaraki University
  • Misato Osada Ibaraki University
  • Fumihiko Ikegami University of Tasmania

Keywords:

Digital Transformation, Geoinformation, Hazard, Information System, Simulation, Japan , AIST

Abstract

The Geological Survey of Japan, AIST, has implemented the new project "Development of High-Precision Digital Geological Information for Hazard Prevention and Mitigation" in 2022, Volcanic Craters DB, High-resolution Active Faults, Slope Disaster Risk Assessment, Digital Marine Geology, and Geological Digital Transformation (DX) of various geological information are project components. The Geological Hazards Information Database is included in the Geological DX project. Volcanic Hazards Information System, part of the Geological Hazards Information Database, aims to provide a user-friendly, WebGIS-base, open-access information tool for potential and risk mitigation involving the Quaternary volcanoes in the world. This system is useful for evaluating volcanic hazards affected area assessment, estimating future eruption styles and eruption scenarios, and making evacuation plans for various stakeholders.

References

Bonadonna, C., Connor, C. B., Houghton, B. F., Connor, L., Byrne, M., Laing, A., & Hincks, T. K. (2005). Probabilistic modeling of tephra dispersal: Hazard assessment of a multiphase rhyolitic eruption at Tarawera, New Zealand. Journal of Geophysical Research: Solid Earth, 110. https://doi.org/10.1029/2003JB002896

Cabinet Office (2020). Five-years Acceleration Measures for Disaster Prevention and Mitigation, and National Resilience. https://www.cas.go.jp/jp/seisaku/kokudo_kyoujinka/5kanenkasokuka/index.html

Connor, C. B. (2006). Inversion is the solution to dispersion: understanding eruption dynamics by inverting tephra fallout. In Statistics in Volcanology, eds., H. M. Mader, S. Coles, C. B. Connor, and L. J. Connor (London: Geological Society of London), IAVCEI1, 231–242.

Furukawa, R. & Nakagawa, M. (2010). Geological Map of Tarumae Volcano. Geological Map of Volcano no. 15, 8p. Geological Survey of Japan, AIST.

Geological Survey of Japan (2024). Volcanic Hazards Information System, https://geohazards

-info.gsj.jp/vhazard/HazardAssessment/

Ishizuka, Y., Yamamoto, T., Nakano, S., & Takarada, S. (2022). Information dataset for craters of Fuji Volcano. Open-File Report of the Geological Survey of Japan, AIST, no.733.

Japan Meteorological Agency (2013). National Catalogue of the Active Volcanoes in Japan (the fourth edition, Japan Meterological Agency, 1498p (revised version in 2018).

Malin, M. C. & Sheridan, M. F. (1982). Computer-assisted mapping of pyroclastic surges. Science, 217, 637-640.

Pitman, E. B., Patra, A., Bauer, A., Sheridan, M. & Bursik, M. (2003). Computing debris flows and landslides. Physics of Fluids, 15, 3638-3646.

Sheridan, M. F. (1980). Pyroclastic block flow from the September 1976, eruption of La Soufrière volcano, Guadeloupe. Bulletin Volcanologique, 43, 397-402.

Sheridan, M. F., Stinton, A. J., Patra, A., Pitman, E. B., Bauer, A. & Nichita, C. C. (2004). Evaluating Titan2D mass-flow model using the 1963 Little Tahoma peak avalanches, Mount Rainier, Washington. Jour. Volcanol. Geotherm. Res., 139, 89–102. https://doi.org/10.1016/j.jvolgeores.2004.06.011

Sobradelo, R., Bartolini, S., & Marti, J. (2014). HASSET: a probability event tree tool to evaluate future volcanic scenarios using Bayesian inference. Bull. Volcanol. 76:770. https://doi.org/10.1007/s00445-013-0770-x

Takada, A., Yamamoto, T., Ishizuka, Y., & Nakano, S. (2016). Geological Map of Fuji Volcano (Second Edition). Miscellaneous Map Series 12, 56 p. Geological Survey of Japan, AIST.

Takarada, S. (2017). The Volcanic Hazards Assessment Support System for the Online Hazard Assessment and Risk Mitigation of Quaternary Volcanoes in the World. Frontiers in Earth Science, 5:102. https://doi.org/10.3389/feart.2017.00102

Takarada, S., Yoshimoto, M., Kitagawa, J., Hiraga, M., Yamamoto, T., Kawanabe, Y., Takada, A., Nakano, S., Hoshizumi, H., Miyagi, I., Nishimura, Y., Miura, D., Hirose, W., Ishimaru, S., Kakihara Y., Endo, Y., Norota, S., Niida, K., Ishizuka, Y., Kudo, T., Aizawa, K., Honma, H., Egusa, M., Ishii, E. & Takahashi, R. (2001). Volcanic ash falls from the Usu 2000 eruption and situation at the source area. Bull. Geol. Surv. Japan. 52, 167-179.

Takarada, S., Oikawa, T., Furukawa, R., Hoshizumi, H., Itoh, J., Geshi, N., & Miyagi, I. (2016). Estimation of total discharged mass from the phreatic eruption of Ontake Volcano, central Japan, on September 27, 2014. Earth Planets and Space, 68, 1-9. https://doi.org/10.1186/s40623-016-0511-4.

Tonini, R., Sandri, L., & Thmpson, M. A. (2015). PyBetVH: a Python tool for probabilistic volcanic hazard assessment and for generation of Bayean Hazard curves and maps. Comp. Geosci. 79, 38–46. https://doi.org/10.1016/j.cageo.2015.02.017

Downloads

Published

2025-06-26

How to Cite

Takarada, S., Bandibas, J., Kohno, Y., Maitani, S., Kariya, E., Kaneda, Y., Osada, M., & Ikegami, F. (2025). Digital Transformation Activities in Geological Survey of Japan, AIST: Development of Volcanic Hazards Information System. Thai Geoscience Journal, 6(9), 1–12. retrieved from https://ph03.tci-thaijo.org/index.php/TGJ/article/view/1971

Issue

Section

Research article

Categories