A review of evidence for a Gulf of Tonkin location for the Australasian tektite source crater
Keywords:
Australasian tektite, Gulf of Tonkin, impact crater, Pleistocene, Song Hong Basin, Yinggehai BasinAbstract
Australasian tektites (AAT) occur across Southeast Asia, Australia, the Indian Ocean, and southwest Pacific Ocean. AAT form the youngest and most extensive major tektite strewn field. Unlike other tektite strewn fields, AAT have no known source crater. Review of the literature establishes that a single ~ 43 km post-impact diameter crater exists, possibly significantly enlarged by slumping. The
obliquity of the impact that formed the AAT would result in a crater that is less pervasive in depth but with greater downrange shock effects and melt ejection. Multiple lines of evidence, historically viewed in isolation, were examined, concatenated, contextualized, and discussed. Tektite morphology and distribution; microtektite regressions; geochemical considerations, comparisons, and iso-concentration regressions; lithological characteristics; age of source rock; and regional geological considerations are reviewed. The source material is predicted to be an abnormally thick sequence of rapidly deposited, poorly compacted, deltaic to shallow marine, shales to clay-rich siltstones of early Pleistocene to Pliocene age. The impact likely occurred in a shallow marine environment. Forty-
two maps of positive and negative parameters are presented and overlain. These indicate the AAT source crater probably lies in the central to northwestern Yinggehai - Song Hong Basin / Gulf of Tonkin. This geochemically optimal setting is characterized by exceptionally high sedimentation rates that explain the 10Be and Rb-Sr age discrepancy, the seawater signature, and apparent absence of a crater by rapid burial.
References
Ackerman, L., Skála, R., Křížová, Š., Žák, K., & Magna, T. (2019). The quest for an extraterrestrial component in Muong Nong-type and splash-form Australasian tektites from Laos using highly siderophile elements and Re-Os isotope systematics. Geochimica et Cosmochimica Acta, 252, 179–189. https://doi.org/10. 1016/j.gca.2019.03.009.
Ackerman, L., Žák, K., Skála, R., Rejšek, J., Křížová, Š., Wimpenny, J., & Magna, T. (2020). Sr-Nd-Pb isotope systematics of Australasian tektites: Implications for the nature and composition of target materials and possible volatile loss of Pb. Geochimica et Cosmochimica Acta, 276, 135–150. https://doi.org/10.1016/j.gca.2020.02.025
Amare, K., & Koeberl, C. (2006). Variation of chemical composition in Australasian tektites from differrent localities in Vietnam. Meteoritics & Planetary Science, 41(1), 107–123.https://doi.org/10.1111/j.194 5-5100.2006.tb00196.x
Arp, G., Dunkl, I., Jung, D., Karius, V., Lukács, R., Zeng, L., … Head III, J. W. (2021). A volcanic ash layer in the Nördlinger Ries impact structure (Miocene, Germany): Indication of crater fill geometry and origins of long-term crater floor sagging. Journal of Geophysical Research: Planets, e2020JE006764. https://doi.org/10.1029/2020JE006764
Artemieva, N. A. (2008, March 10–14). Tektites: Model Versus Reality [Abstract #1651]. Abstract submitted to the 39th Lunar and Planetary Science Conference, League City, Texas, United States of America. Retrieved from: https://www.lpi.usra.edu/meetings/ lpsc2008/pdf/1651.pdf
Artemieva, N. A. (2013, March 18–22). Numerical Modeling of the Australasian Tektite Strewn Field [Abstract #1410]. Abstract submitted to the 44th Lunar and Planetary Science Conference, The Woodlands, Texas, United States of America. Retrieved from: https://www.lpi.usra.edu/meetings/lpsc2013/pdf/1410.pdf
Artemieva, N. A., & Pierazzo, E. (2003, February 7-9). Oblique Impact and its Ejecta: Numerical Modeling [Abstract #8022]. Abstract submitted to: Impact Cratering, Bridging the Gap Between Modeling and Observations, Houston, Texas, United States of America. Retrieved from: https://www.lpi.usra.edu/ meetings/impact2003/pdf/8022.pdf
Beran, A., & Koeberl, C. (1997). Water in tektites and impact glasses by fourier-transformed infrared spectrometry. Meteoritics & Planetary Science, 32(2), 211–216. https://doi.org/10.1111/j.1945-5100.1997.tb 01260.x
Blum, J. D., Papanastassiou, D. A., Koeberl, C., & Wasserburg, G. J. (1992). Neodymium and strontium isotopic study of Australasian tektites: New constraints on the provenance and age of target materials. Geochimica et Cosmochimica Acta, 56(1), 483–492. https://doi.org/10.1016/0016-7037(92)90146-A
Bunopas, S., Wasson, J. T., Vella, P., Fontaine, H., Hada, S., Burrett, C., … Khositanont, S. (1999). Early Quaternary global terrestrial impact of a whole comet in the Australasian tektite field, newest apparent evidences discovery from Thailand and East Asia. Bull. Geol. Soc. Malaysia. Proceedings Geosea ’98 Ninth Regional Congress on Geology, Mineral and Energy Resources of Southeast Asia., 43, 555–575. https://doi.org/10.7186/bgsm43199956
Burns, C. A., Schnetzler, C. C., & Chase, J. N. (1961). Tektite from Martha’s Vineyard, Massachusetts. Geological Society of America Bulletin, 72(2), 339. https://doi.org/10.1130/0016-7606(1961)72[339:TFM VM]2.0.CO;2
Čada, M., Houzar, S., Hrazdil, V., & Skála, R. (2002, September 23-26). Field Trip Guidebook and Abstracts. Presented at the 9th International Conference on Moldavites, impact glasses and impact processes, Františkovy Lázně, Czech Republic.
Cao, L., Jiang, T., Wang, Z., Zhang, Y., & Sun, H. (2015). Provenance of Upper Miocene sediments in the Yinggehai and Qiongdongnan basins, northwestern South China Sea: Evidence from REE, heavy minerals and zircon U–Pb ages. Marine Geology, 361, 136–146. https://doi.org/10.1016/j.margeo.2015.01.007
Carter, A., Roques, D., & Bristow, C. S. (2000). Denudation history of onshore central Vietnam: Constraints on the Cenozoic evolution of the western margin of the South China Sea. Tectonophysics, 322(3– 4), 265–277. https://doi.org/10.1016/S0040-1951(00)0 0091-3
CCOP (2008). Capacity Building within Geoscience in East and Southeast Asia Project (ICB-CCOP 1). Final Report (Volume I) (p. 250). Bangkok, Thailand: Coordinating Committee for Geoscience Programmes in East and Southeast Asia (CCOP). Retrieved from: http://library.dmr.go.th/Document/DMR_Technical_ Reports/2008/22539.pdf
Chapman, D. R. (1964). On the unity and origin of the Australasian tektites. Geochimica et Cosmochimica Acta, 28(6), 841–880. https://doi.org/10.1016/0016- 7037(64)90036-5
Chapman, D. R. (1971). Australasian tektite geographic pattern, crater and ray of origin, and theory of tektite events. Journal of Geophysical Research, 76(26), 6309–6338. https://doi.org/10.1029/JB076i026p06309
Chapman, D. R., & Scheiber, L. C. (1969). Chemical investigation of Australasian tektites. Journal of Geophysical Research, 74(27), 6737–6776. https:// doi.org/10.1029/JB074i027p06737
Chaussidon, M., & Koeberl, C. (1995). Boron content and isotopic composition of tektites and impact glasses: Constraints on source regions. Geochimica et Cosmochimica Acta, 59(3), 613–624. https://doi. org/10.1016/0016-7037(94)00368-V
Chmeleff, J., Blanckenburg, F. von, Kossert, K., & Jakob, D. (2010). Determination of the 10Be half-life by multicollector ICP-MS and liquid scintillation counting. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 268(2), 192-199.https://doi.org/10.1016/j. nimb.2009.09.012
Clift, P. D., Long, H. V., Hinton, R., Ellam, R. M., Hannigan, R., Tan, M. T., … Duc, N. A. (2008). Evolving east Asian river systems reconstructed by trace element and Pb and Nd isotope variations in modern and ancient Red River-Song Hong sedi ments: Evolution of East Asian River Systems. Geochemistry, Geophysics, Geosystems, 9(4). https ://doi.org/10.1029/2007GC001867
Clift, P. D., & Sun, Z. (2006). The sedimentary and tectonic evolution of the Yinggehai-Song Hong basin and the southern Hainan margin, South China Sea: Implications for Tibetan uplift and monsoon intensification: Evolution of Yinggehai-Song Hong Basin. Journal of Geophysical Research: Solid Earth, 111(B6), B06405. https://doi.org/10.1029 /2005JB004048
Collins, G. S., Melosh, H. J., & Marcus, R. A. (2005). Earth impact effects program: A web-based computer program for calculating the regional environmental consequences of a meteoroid impact on Earth. Meteoritics & Planetary Science, 40(6), 817–840. https://doi.org/10.1111/j.1945-5100.200 5.tb00157.x
Collins, G. S., & Wünnemann, K. (2005). How big was the Chesapeake Bay impact? Insight from numerical modeling. Geology, 33(12), 925–928. https://doi.org/ 10.1130/G21854.1
Condie, K. C. (1993). Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales. Chemical Geology, 104(1–4), 1–37. https://doi.org/10.1016/ 0009-2541(93)90140-E
Cordani, U. G., Mizusaki, A. M., Kawashita, K., & Thomaz-Filho, A. (2004). Rb–Sr systematics of Holocene pelitic sediments and their bearing on whole rock dating. Geological Magazine, 141(2), 233–244. https://doi.org/10.1017/S0016756803008616
Dickin, A. P. (2005). Radiogenic Isotope Geology (2nd ed.), 492 p. Cambridge University Press. https:// doi.org/10.1017/CBO9781139165150
Elkins-Tanton, L. T., Kelly, D. C., Bico, J., & Bush, J. W. M. (2002, March 11–15). Microtektites as vapor condensates, and a possible new strewn field at 5 Ma [Abstract #1622]. Abstract submitted to the 33rd Lunar and Planetary Science Conference, League City, Texas, United States of America. Retrieved from: https://www.lpi.usra.edu/meetings/lpsc2002/ pdf/1622.pdf
Elliott, J. R., Huang, Y.-H., Minton, D. A., & Freed, A. M. (2018). The length of lunar crater rays explained using secondary crater scaling. Icarus, 312, 231–246. https://doi.org/10.1016/j.icarus.2018.04.015
Fan, C. (2018). Tectonic deformation features and petroleum geological significance in Yinggehai large strike-slip basin, South China Sea. Petroleum Exploration and Development, 45(2), 204–214. https://doi.org/10.1016/S1876-3804(18)30024-7
Feng, Y., Zhan, W., Chen, H., Jiang, T., Zhang, J., Osadczuk, A., … Zhang, W. (2018). Seismic characteristics and sedimentary record of the late Pleistocene delta offshore southwestern Hainan Island, northwestern South China Sea. Interpretation, 6(4), SO31-SO43. https://doi.org/10.1190/INT-2018- 0012.1
Fenner, C. (1935). Australites, part II. Numbers, forms, distribution and origin. Transactions of the Royal Society of South Australia, 59, 125–140.
Fiske, P. S., Schnetzler, C. C., Mchone, J., Chanthava ichith, K. K., Homsombath, I., Phouthakayalat, T., … Xuan, P. T. (1999). Layered tektites of southeast Asia: Field studies in central Laos and Vietnam. Meteoritics & Planetary Science, 34(5), 757–761. https://onlineli brary.wiley.com/doi/abs/10.1111/j.1945-5100.1999 .tb01388.x
Gault, D. E., & Wedekind, J. A. (1978, March 13-17). Experimental studies of oblique impact. In: Proceedings of the 9th Lunar and Planetary Science Conference (pp. 3843-3875), Houston, Texas, United States of America. Retrieved from:http://adsabs.harvard.edu/full/1978LPS C....9.3843G
Gentner, W. (1966). Auf der Suche nach Kratergläsern, Tektiten und Meteoriten in Afrika. Naturwissen schaften, 53(12), 285–289. https://doi.org/10.1007/ BF00712210
Glass, B. P. (2003, March 17–21). Australasian microtektites in the South China Sea: Implications regarding the location and size of the source crater [Abstract #1092]. Abstract submitted to the 34th Lunar and Planetary Science Conference, League City, Texas, United States of America. Retrieved from:https://www.lpi.usra.edu/meetings/lpsc2003/ pdf/1092.pdf
Glass, B. P., & Barlow, R. A. (1979). Mineral inclusions in Muong Nong-type indochinites: Implications concerning parent material and process of formation. Meteoritics, 14(1), 55–67. https://doi.org/10.1111/j. 1945-5100.1979.tb00479.x
Glass, B. P., Huber, H., & Koeberl, C. (2004). Geochemistry of Cenozoic microtektites and clinopyroxene-bearing spherules. Geochimica et Cosmochimica Acta, 68(19), 3971–4006. https://doi.org/10.1016/j.gca.2004.02.026
Glass, B. P., & Koeberl, C. (2006). Australasian microtektites and associated impact ejecta in the South China Sea and the Middle Pleistocene supereruption of Toba. Meteoritics & Planetary Science, 41(2), 305–326. https://doi.org/10.1111/j. 1945-5100.2006.tb00211.x
Glass, B. P., & Pizzuto, J. E. (1994). Geographic variation in Australasian microtektite concentrations: Impli cations concerning the location and size of the source crater. Journal of Geophysical Research, 99(E9), 19075-19081. https://doi.org/10.1029/94JE01866
Glass, B. P., & Simonson, B. M. (2013). Distal impact ejecta layers: A record of large impacts in sedimentary deposits. 716 p. Heidelberg; New York: Springer. ISBN 978-3-540-88262-6
Gong, Z. S., & Li, S. T. (2004). Dynamic research of oil and gas accumulation in northern marginal basins of South China Sea. 339 p. Science in China Press, Beijing, (in Chinese with English abstract).
Gong, Z. S., Li, S. T., Xie, T. J., Zhang, Q. M., Xu, S. C., Xia, K. Y., … Liu, L. H. (1997). Continental margin basin analysis and hydrocarbon accumulation of the northern South China Sea. 510 p. China Sci. Press, Beijing, (in Chinese with English abstract).
Haines, P. W., Howard, K. T., Ali, J. R., Burrett, C. F., & Bunopas, S. (2004). Flood deposits penecontem poraneous with ∼0.8 Ma tektite fall in NE Thailand: Impact-induced environmental effects? Earth and Planetary Science Letters, 225(1–2), 19–28. https:// doi.org/10.1016/j.epsl.2004.05.008
Hartung, J. B., & Koeberl, C. (1994). In search of the Australasian tektite source crater: The Tonle Sap hypothesis. Meteoritics, 29(3), 411–416.https:// doi.org/10.1111/j.1945-5100.1994.tb00606.x
Hoang, N., Flower, M. F. J., & Carlson, R. W. (1996). Major, trace element, and isotopic compositions of Vietnamese basalts: Interaction of hydrous EM1-rich asthenosphere with thinned Eurasian lithosphere. Geochimica et Cosmochimica Acta, 60(22), 4329– 4351. https://doi.org/10.1016/S0016-7037(96)00247-5
Hoang, N., Hauzenberger, C., Fukuyama, M., & Konzett, J. (2018, October 16-17). Cenozoic volcanism in the Bolaven Plateau, southern Laos. Abstract submitted to the Regional Congress on Geology, Minerals and Energy Resources of Southeast Asia (GEOSEA), Hanoi, Vietnam.
Howard, B. C. (2016). Australia Is Drifting So Fast GPS Can’t Keep Up. National Geographic. [online]. [Cited 23 September 2016]. Retrieved from: https://www. nationalgeographic.com/news/2016/09/australia-movesgps-coordinates-adjusted-continental-drift/
Howard, K. T. (2011). Volatile enhanced dispersal of high velocity impact melts and the origin of tektites. Proceedings of the Geologists’ Association, 122(3), 363–382. https://doi.org/10.1016/j.pgeola.2010.11.006
Howard, K. T., Haines, P. W., Burrett, C. F., Ali, J. R., & Bunopas, S. (2003). Sedimentology of 0.8 Ma logbearing flood deposits in northeast Thailand and mechanisms for pre-flood deforestation. Proceedings, 8th International Congress on Pacific Neogene Stratigraphy, Chiang Mai, Thailand, 49–67.
Huber, H. (2009). INAA of Muong-Nong type tektites and adjacent soil samples. 22nd Seminar Activation Analysis and Gamma-Spectroscopy. Program and Book of Abstracts. 35.
Izokh, E. P., & An, L. D. (1983). Tektites of Vietnam. Tektites delivered by a comet: A hypothesis. NASA Report No. NAS 1.7720103; NASA-TT-20103. Transl. into English from Meteoritika (Moscow), 42, 158-170.
Javanaphet, C. (1969). Geological Map of Thailand; Scale 1: 1,000,000 with Explanation. Department of Mineral Resources, Bangkok, Thailand.
Jiang, T., Xie, X., Chen, H., Wang, Z., and Li, X. (2015) Geochemistry of pore water and associated diagenetic reactions in the diapiric area of Yinggehai Basin, northwestern South China Sea. Journal of Earth Science, 26(3), 306–316. https://doi.org/10.1007/s125 83-015-0526-y
Jonell, T. N., Clift, P. D., Hoang, L. V., Hoang, T., Carter, A., Wittmann, H., … Rittenour, T. (2017). Controls on erosion patterns and sediment transport in a monsoonal, tectonically quiescent drainage, Song Gianh, central Vietnam. Basin Research, 29, 659–683. https://doi.org/10.1111/bre.12199
Jourdan, F. (2012). The 40Ar/39Ar dating technique applied to planetary sciences and terrestrial impacts. Australian Journal of Earth Sciences, 59(2), 199– 224. https://doi.org/10.1080/08120099.2012.644404
Jourdan, F., Moynier, F., Koeberl, C., & Eroglu, S. (2011). 40Ar/39Ar age of the Lonar crater and consequence for the geochronology of planetary impacts. Geology, 39(7), 671–674. https://doi.org/ 10.1130/G31888.1
Jourdan, F., Nomade, S., Wingate, M. T. D., Eroglu, E., & Deino, A. (2019). Ultraprecise age and formation temperature of the Australasian tektites constrained by 40Ar/39Ar analyses. Meteoritics & Planetary Science, 54(10), 2573–2591. https://doi.org/10.11 11/maps.13305
Kenkmann, T., Collins, G. S., Wittmann, A., Wünnemann, K., Reimold, W. U., & Melosh, H. J. (2009). A model for the formation of the Chesapeake Bay impact crater as revealed by drilling and numerical simulation. Geological Society of America Special Papers, 458, 571–585. https://doi.org/10.11 30/2009.2458(25)
Koeberl, C. (1986). Muong Nong type tektites from the moldavite and North American strewn fields? Journal of Geophysical Research: Solid Earth, 91(B13), E253–E258. https://doi.org/10.1029/JB0 91iB13p0E253
Koeberl, C. (1992). Geochemistry and origin of Muong Nong-type tektites. Geochimica et Cosmochimica Acta, 56(3), 1033–1064. https://doi.org/10.1016 /0016-7037(92)90046-L
Koeberl, C. (1994). Tektite origin by hypervelocity asteroidal or cometary impact: Target rocks, source craters, and mechanisms. Geological Society of America Special Papers, 293, 133–152. https://doi. org/10.1130/SPE293-p133
Koeberl, C., Bottomley, R., Glass, B. P., & Storzer, D. (1997). Geochemistry and age of Ivory Coast tektites and microtektites. Geochimica et Cosmochi-mica Acta, 61(8), 1745–1772. https://doi.org/10.1016/S0016- 7037(97)00026-4
Koeberl, C., Kluger, F., & Kiesl, W. (1985). Rare earth elemental patterns in some impact glasses and tektites and potential parent materials. Chemie Der Erde, 44(2), 107–121.
Koeberl, C., Nishiizumi, K., Caffee, M. W., & Glass, B. P. (2015, July 27–31). Beryllium-10 in Individual Australasian Microtektites and Origin of Tektites [Abstract #5187]. Abstract submitted to the 78th Annual Meeting of the Meteoritical Society, Berkeley, California, United States of America. Retrieved from: https://www.hou.usra.edu/meetings /metsoc2015/pdf/5187.pdf
Korschinek, G., Bergmaier, A., Faestermann, T., Gerstmann, U. C., Knie, K., Rugel, G., … Gostomski, C. L. von. (2010). A new value for the half-life of 10Be by heavy-ion elastic recoil detection and liquid scintillation counting. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 268(2), 187– 191. https://doi.org/10.1016/j.nimb.2009.09.020
Lei, C., Ren, J., Clift, P. D., Wang, Z., Li, X., & Tong, C. (2011). The structure and formation of diapirs in the Yinggehai–Song Hong Basin, South China Sea. Marine and Petroleum Geology, 28(5), 980–991. https://doi.org/10.1016/j.marpetgeo.2011.01.001
Lei, C., Ren, J., Sternai, P., Fox, M., Willett, S., Xie, X., … Wang, Z. (2015). Structure and sediment budget of Yinggehai–Song Hong basin, South China Sea: Implications for Cenozoic tectonics and river basin reorganization in Southeast Asia. Tectonophysics, 655, 177–190. https://doi.org/10.1016/j.tecto.2015. 05.024
Liu, Z., Colin, C., Huang, W., Le, K. P., Tong, S., Chen, Z., & Trentesaux, A. (2007). Climatic and tectonic controls on weathering in south China and Indochina Peninsula: Clay mineralogical and geochemical investigations from the Pearl, Red, and Mekong drainage basins: controls on weatherings in S. China. Geochemistry, Geophysics, Geosystems, 8(5). https://doi.org/10.1029/2006GC001490
Liu, Z., Zhao, Y., Colin, C., Stattegger, K., Wiesner, M. G., Huh, C. A., … Li, Y. (2016). Source-to-sink transport processes of fluvial sediments in the South China Sea. Earth-Science Reviews, 153, 238–273. https://doi.org/10.1016/j.earscirev.2015.08.005
Lodders, K., & Fegley, B. (1998). The Planetary Scientist’s Companion. 392 p. Oxford University Press on Demand. ISBN: 9780195116946
Ma, P., Aggrey, K., Tonzola, C., Schnabel, C., de Nicola, P., Herzog, G. F., … Klein, J. (2004). Beryllium-10 in Australasian tektites: Constraints on the location of the source crater. Geochimica et Cosmochimica Acta, 68(19), 3883–3896. https://doi.org/10.1016/ j.gca.2004.03.026
Mark, D. F., Renne, P. R., Dymock, R. C., Smith, V. C., Simon, J. I., Morgan, L. E., … Pearce, N. J. G. (2017). High-precision 40Ar/39Ar dating of Pleistocene tuffs and temporal anchoring of the Matu-yama-Brunhes boundary. Quaternary Geochronology, 39, 1–23. https://doi.org/10.1016/j.quageo.2017.01.002
Matsuda, J., Maruoka, T., Pinti, D. L., & Koeberl, C. (1996). Noble gas study of a philippinite with an unusually large bubble. Meteoritics & Planetary Science, 31(2), 273–277. https://doi.org/10.1111/ j.1945-5100.1996.tb02023.x
McDonough, W. F., & Sun, S. S. (1995). The composition of the Earth. Chemical Geology, 120(3– 4), 223–253. https://doi.org/10.1016/0009-2541 (94)00140-4
McHarg, I. L. (1969). Design with Nature. Garden City, N.Y.: Published for the American Museum of Natural History [by] the Natural History Press.
Meisel, T., Langenauer, M., & Krähenbühl, U. (1992). Halogens in tektites and impact glasses. Meteoritics, 27(5), 576–579. https://doi.org/10.1111/j.1945- 5100.1992.tb01079.x
Métivier, F., Gaudemer, Y., Tapponnier, P., & Klein, M. (1999). Mass accumulation rates in Asia during the Cenozoic. Geophysical Journal International, 137(2), 280–318. https://doi.org/10.1046/j.1365- 246X.1999.00802.x
Mizote, S., Matsumoto, T., Matsuda, J., & Koeberl, C. (2003). Noble gases in Muong Nong-type tektites and their implications. Meteoritics & Planetary Science, 38(5), 747–758. https://doi.org/10.1111/j. 1945-5100.2003.tb00039.x
O’Keefe, J. A. (1963). Tektites. 228 p. The University of Chicago Press.
Orbit 1.2 Software. (1998-2000). Published by Siltec Ltd. Retrieved (in 2011, no longer available) from: http://physics-animations.com/Physics/English/orbit.htm
Pierazzo, E., & Melosh, H. J. (2000). Melt Production in Oblique Impacts. Icarus, 145(1), 252–261. https://doi.org/10.1006/icar.1999.6332
Povenmire, H. (2010, July 26–30). The First Georgia- -Area Tektite Found in South Carolina [Abstract #5222]. Abstract submitted to the 73rd Annual Meeting of the Meteoritical Society, New York, United States of America. Retrieved from: https://www.lpi.usra.edu/meetings/metsoc2010/pdf/ 5222.pdf
Povenmire, H., & Strange, R. L. (2006, March 13–17). The First Tektite from Dooly Crisp Counties, Georgia [Abstract #1002]. Abstract submitted to the 37th Lunar and Planetary Science Conference, League City, Texas, United States of America. Retrieved from: https://www.lpi.usra.edu/meetings /lpsc2006/pdf/1002.pdf
Prasad, M. S., Mahale, V. P., & Kodagali, V. N. (2007). New sites of Australasian microtektites in the central Indian Ocean: Implications for the location and size of source crater. Journal of Geophysical Research, 112(E6), E06007. https://doi.org/10.1029/2006JE00 2857
Rochette, P., Braucher, R., Folco, L., Horng, C. S., Aumaître, G., Bourlès, D. L., & Keddadouche, K. (2018). 10Be in Australasian microtektites compared to tektites: Size and geographic controls. Geology, 46(9), 803–806. https://doi.org/10.1130/G45038.1
Schmieder, M., & Kring, D. A. (2020). Earth’s Impact Events Through Geologic Time: A List of Recommended Ages for Terrestrial Impact Structures and Deposits. Astrobiology, 20(1), 91– 141. https://doi.org/10.1089/ast.2019.2085
Schmitt, S. R. (2004). Ballistic Trajectory (2-D) Calculator-Computes the maximum height, range, time to impact, and impact velocity of a ballistic projectile. [online]. [Cited 14 November 2020]. Retrieved from: http://www.convertalot.com/bal listic_trajectory_calculator.html
Schnetzler, C. C. (1992). Mechanism of Muong Nong type tektite formation and speculation on the source of Australasian tektites. Meteoritics, 27(2), 154–165. https://doi.org/10.1111/j.1945-5100.1992.tb00743.x
Schnetzler, C. C., & McHone, J. F. (1996). Source of Australasian tektites: Investigating possible impact sites in Laos. Meteoritics & Planetary Science, 31(1), 73–76. https://doi.org/10.1111/j.1945-5100. 1996.tb02055.x
Schnetzler, C. C., & Pinson Jr, W. H. (1963). The chemical composition of tektites. In: O’Keefe, J. A. (1963) Tektites (p. 95–129). The University of Chicago Press.
Schultz, P. H. (1992). Atmospheric effects on ejecta emplacement and crater formation on Venus from Magellan. Journal of Geophysical Research: Planets, 97(E10), 16183–16248. https://doi.org/10. 1029/92JE01508
Schultz, P. H., Anderson, J. B. L., & Hermalyn, B. (2009, March 23–27). Origin and Significance of Uprange Ray Patterns [Abstract #2496]. Abstract submitted to the 40th Lunar and Planetary Science Conference, The Woodlands, Texas, United States of America. Retrieved from: https://www.lpi.usra. edu/meetings/lpsc2009/pdf/2496.pdf
Schultz, P. H., Eberhardy, C. A., Ernst, C. M., A’Hearn, M. F., Sunshine, J. M., & Lisse, C. M. (2007). The Deep Impact oblique impact cratering experiment. Icarus, 191(2), 84–122. https://doi.org/10.1016/j. icarus.2007.06.031
Shaw, H. F., & Wasserburg, G. J. (1982). Age and provenance of the target materials for tektites and possible impactites as inferred from Sm-Nd and Rb- -Sr systematics. Earth and Planetary Science Letters, 60(2), 155–177. https://doi.org/10.1016/0012-821X (82)90001-2
Shuvalov, V., & Dypvik, H. (2013). Distribution of ejecta from small impact craters. Meteoritics & Planetary Science, 48(6), 1034–1042. https://doi. org/10.1111/maps.12127
Sieh, K., Herrin, J., Jicha, B., Schonwalder Angel, D., Moore, J. D. P., Banerjee, P., … Charusiri, P. (2020). Australasian impact crater buried under the Bolaven volcanic field, Southern Laos. Proceedings of the National Academy of Sciences, 117(3), 1346–1353. https://doi.org/10.1073/pnas.1904368116
Stöffler, D., Gault, D. E., Wedekind, J. E., & Polkowski G. (1975). Experimental hypervelocity impact into quartz sand: Distribution and shock metamorphism of ejecta. Journal of Geophysical Research, 80(29), 4062-4077. https://doi.org/10.1029/JB080i029p04062
Stöffler, D., Hamann, C., & Metzler, K. (2018). Shock metamorphism of planetary silicate rocks and sediments: Proposal for an updated classification system. Meteoritics & Planetary Science, 53(1), 5– 49. https://doi.org/10.1111/maps.12912
Tada, T., Carling, P. A., Tada, R., Songtham, W., Chang, Y., & Tajika, E. (2019, December 9-13). Constraint on the Location of the Australasian Tektite Impact Event based on the Distribution of the Ejecta Deposits across the Eastern Indochina [Abstract #NH51C0786; Poster #0786]. American Geophysical Union Fall Meeting, San Francisco, United States of America. Abstract retrieved from: https://ui.adsabs. harvard.edu/abs/2019AGUFMNH51C0786T/abstract
Trnka, M. (2020, March 16–20). Notes on Contents of 10Be Isotope in Tektites and Microtektites of the Australasian Strewn Field [Abstract #1149]. Abstract submitted to the 51st Lunar and Planetary Science Conference, The Woodlands, Texas, United States of America. Retrieved from: https:// www.hou.usra.edu/meetings/lpsc2020/pdf/1149.pdf
Trnka, M., & Houzar, S. (2002). Moldavites: A review. Bulletin of the Czech Geological Survey, 77(4), 283– 302. Retrieved from: http://www.geology.cz/ bulletin/fulltext/04trnkafinal.pdf Vickery, A. M. (1993). The theory of jetting: Application to the origin of tektites. Icarus, 105(2), 441– 453. https://doi.org/10.1006/icar.1993.1140
Vickery, A. M., & Browning, L. (1991, July 21-26). Water depletion in tektites. Abstract submitted to the 78th Annual Meeting of the Meteoritical Society, Monterey, California, United States of America. In: Meteoritics, 26, 403. Retrieved from: http://adsabs. harvard.edu/full/1991Metic..26Q.403V
Wasson, J. T. (2003). Large Aerial Bursts: An Important Class of Terrestrial Accretionary Events.Astrobiology, 3(1), 163–179. https://doi.org/10.1089/15311070332 1632499
Wasson, J. T. (2017, March 20–24). A Thermal-Plume Origin of Layered and Splash-Form Tektites and Libyan Desert Glass [Abstract #2916]. Abstract submitted to the 48th Lunar and Planetary Science Conference, The Woodlands, Texas, United States of America. Retrieved from: https://www.hou.us ra.edu/meetings/lpsc2017/pdf/2916.pdf
Wei, G., Liu, Y., Ma, J., Xie, L., Chen, J., Deng, W., & Tang, S. (2012). Nd, Sr isotopes and elemental geochemistry of surface sediments from the South China Sea: Implications for Provenance Tracing. Marine Geology, 319–322, 21–34. https://doi.org/ 10.1016/j.margeo.2012.05.007
Whymark, A. (2013, March 18–22). Review of the Australasian tektite source crater location and candidate structure in the Song Hong-Yinggehai basin, Gulf of Tonkin [Abstract #1077]. Abstract submitted to the 44th Lunar and Planetary Science Conference, The Woodlands, Texas, United States of America. Retrieved from: https://www.lpi.usra. edu/meetings/lpsc2013/pdf/1077.pdf
Whymark, A. (2018, March 19-23). Further Geo physical Data in the Search for the Australasian Tektite Source Crater Location in the Song Hong- -Yinggehai Basin, Gulf of Tonkin [Abstract #1078]. Abstract submitted to the 49th Lunar and Planetary Science Conference, The Woodlands, Texas, United States of America. Retrieved from: https://www.hou. usra.edu/meetings/lpsc2018/pdf/1078.pdf
Whymark, A. (2020, August 5–7). Newly Discovered Muong Nong-Type Layered Impact Glass / Tektites from Paracale, Philippines and Implications for Source Crater Location [Abstract #2006]. Abstract submitted to the 11th Planetary Crater Consortium Meeting, Hawaii (Virtual), United States of America. Retrieved from: https://www.hou.usra.edu/meetings /crater2020/pdf/2006.pdf
Yan, Y., Carter, A., Palk, C., Brichau, S., and Hu, X. (2011). Understanding sedimentation in the Song Hong-Yinggehai Basin, South China Sea: Sedimentation in the Yinggehai Basin. Geochemistry, Geophysics, Geosystems, 12(6), https://doi.org/10.10 29/2011GC003533
Zähringer, J., & Gentner, W. (1963). Radiogenic and atmospheric argon content of tektites. Nature, 199(4893), 583–583. https://doi.org/10.1038/1995 83a0
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Thai Geoscience Journal
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.