Transformation Growth Factor ? (TGF-?) Superfamily Signaling and Their Novel CandidateAntagonist, High-Temperature Requirement Factor A (HtrA3)

Authors

  • Jiraporn Tocharus Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok 65000,Thailand.

Abstract

Members of Transformation Growth Factor (TGF-β) superfamily, which include TGFβs, growth differentiation factors, bone morphogenetic proteins, activin, inhibin, and glial cell linederived neurotrophic factor, are multifunctional cytokines.  Most ligands of the family signal through transmembrane serine/theronine kinase receptors and Smad proteins to regulate cellular functions, including proliferation, apoptosis, extracellular matrix secretion and adhesion, terminal differentiation and specification of developmental fate.  The regulation of each of these functions of TGF-βs superfamily factors is important for embryonic development. Extracellularly multiple  binding proteins for the TGF-β family have been characterized as regulators of TGF-β signaling. This review focused on a novel candidate antagonist of TGF-β superfamily signaling termed HtrA3. high-temperature requirement factor A (HtrA3) binds to a broad range of TGF-β proteins such as TGF-β1, TGF-β2, BMP4 and GDF5 and also inhibit at least TGF-β1 and BMP4 signaling.

References

Attisano, L., & Wrana, J. L. (2002). Smads as transcriptional co-modulators. Current Opinion in Cell Biology, 12, 235-243.

Baker, J. C., & Harland, R. M. (1996). A novel mesoderm inducer Madr2, functions in the activin signal transduction pathway. Genes & Development, 10, 1880-1889.

Barth, K. A., Kishimoto, Y., Rohr, K. B., Seydler, C., Schulte-Merker, S., & Wilson, S. W. (1999). BMP activity establishes a gradient of positional information throughout the entire neural plate. Development, 126, 4977-4987.

Brunet, L. J., McMahon, J. A., McMahon. A. P., & Harland, R. M. (1998). Noggin, cartilage morphogenesis, and joint formation in the mammalian skeleton. Science, 280, 1455-1457.

Burt, D. W., & Law, A. S. (1994). Evolution of the transforming growth factor - β superfamily. Progress in Growth Factor Research, 5, 99-118.

Capdevila, J., & Izpisua Belmonte, J. C. (2001). Patterning mechanisms controlling vertebrate limb development. Annual Review of Cell and Developmental Biology, 17, 87-132.

Clausen, T., Southan, C., & Ehrmann, M. (2002). The HtrA family of proteases: Implications for protein composition and cell fate. Molecular Cell, 10, 443-455.

Dale, L., & Jones, C. M. (1999). BMP signaling in early Xenopus development. Bioessays, 21, 751-760.

De Robertis, E. M., Larrain, J., Oelgesxhlager, M., & Wessely, O. (2000). The establishment of Spemann's organizer and patterning of the vertebrate embryo. Nature Reviews Genetics, 1, 171-181.

Dick, A., Risau, W., & Drexler, H. (1998). Expression of Smad1 and Smad2 during embryogenesis suggests a role in organ development. Developmental Dynamics, 211, 293-305.

Eppert, K., Scherer, S. W., Ozcelik, H., Pirone, R., Hoodless, P., Kim, H., et al. (1996). Madr2 maps to 19q21 and encodes a TGF-β regulated Mad-related proteins that is functionally mutated in colorectal carcinoma. Cell, 86, 543-552.

Francis-West, P. H., Parish, J., Lee, K., & Archer, C. W. (1999). BMP/GDFsignaling interactions during synovial joint development. Cell and Tissue Research, 296, 111-119.

Hama, J., & Weinstein, D. C. (2001). Is Chordin a morphogen. Bioessays, 23, 121-124.

Heldin, C. H., Miyazono, K., & Dijke, T. P. (1997). TGF-β signaling from cell membrane to nucleus through Smad proteins. Nature, 390, 465-471.

Hemmati-Brivanlou, A., Kelly, O. G., & Melton, D. A. (1994). Follistatin, an antagonist of activin, is expressed in the Spemann organizer and displays direct neuralizing activity. Cell, 77, 283-295.

Hogan, B. L. M. (1996). Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes & Development, 10, 1580-1594.

Hoodless, P. A., Haerry, T. S., Abdollah, M., Stapleton, M. B., O'Connor, L., Attisano, L., et al. (1996). MADR1, a MAD-regulated protein that functions in BMP-2 signaling pathways. Cell, 85, 489-500.

Kingley, D. (1994). The TGF- β superfamily: New members, new receptors, and new genetic tests of function in different organisms. Genes & Development, 8, 133-146.

Liem, K. F., Jessel, T. M., & Briscoe, J. (2000). Regulation of the neural pat terning activity of sonic hedgehog by secreted BMP inhibitors expressed by notochord and somites. Development, 127, 4855-4866.

Link, B. A., & Nishi, R. (1997). Opposing effects of activin A and Follistatin on developing skeletal muscle cells. Experimental Cell Research, 233, 350-362.

Lipinska, B., Sharma, S., & Georgopoulos, C. (1988). Sequence analysis and regulation of the HtrA gene of Escherichia coli: a sigma 32-independent mechanism of heat-inducible transcription. Nucleic Acids Research, 16, 10053-10067.

Liu, F., Hata, F., Baker, J., Doody, J., Carcamo, J., Harland, R. M., et al. (1996). A Human Mad protein acting as a BMP-regulated transcriptional activator. Nature, 381, 620-623.

Massague, J. (1998). TGF-β signal transduction. Annual Review of Biochemistry, 67, 753-791.

Massague, J., Cheifetz, S., Laiho, M., Ralph, D. A., Weis, F. M., & Zentella, A. (1992). Transforming growth factor-β. Cancer Surveys, 12, 81-103.

Massague, J., & Chen, Y. G. (2000). Controlling TGF-β signaling. Genes & Development, 14, 627-644.

Massague, J., & Wotton, D. (2000). Transcriptional control by the TGF-β/Smad signaling system. EMBO Journal, 19, 1745-1754.

Misra, R., CastilloKeller, M., & Deng, M. (2000). Overexpression of proteasedeficient DegP (S210A) rescues the lethal phenotype of Escherichia coli OmpF assembly mutants in a DegP background. Journal of

Bacteriology, 182, 4882-4888.

Miyazano, K., Kusanaki, K., & Inoue, H. (2001). Divergence and convergence of TGF-b BMP signaling. American Journal of Physiology. Cell Physiology, 187, 265-276.

Moses, H. L, & Serra, R. (1996). Regulation of differentiation by TGF-β. Current Opinion in Genetic & Development, 6, 581-596.

Nakamura, T., Takio, K., Eto, Y., Shibai, H., Titani, K., & Sugino, H. (1990). Activin-binding protein from rat ovary is follistatin. Science, 247, 836-838.

Oh, Y., Muller, H. L., Ng, L., & Rosenfeld, R. G. (1995). Transforming growth factor- -induced cell growth inhibition in human breast cancer cells is mediated through insulin-like growth factor-binding protein-3 action.

Journal of Biological Chemistry, 271, 30322-30325.

Pearce, J. J., Penny, G., & Rossant, J. (1999). A mouse Cerberus/DAN-related gene family. Development Biology, 209, 98-110.

Roberts, A. B., & Sporn, M. B. (1992). Differential expression of the TGF-β isoforms in embryogenesis suggests specific roles in developing and adult tissues. Molecular Reproducion and Development, 32, 91-98.

Schweitzer, R., Chyung, J. H., Murtaugh, L. C., Brent, A. E., Rosen, V., Olson, E. N., et al. (2001). Analysis of the tendon cell fate using Scleraxis, a specific marker for tendons and ligaments. Development, 128, 3855-3866.

Serra, R., Johnson, M., Filvaroff, E. H., LaBorde, J., Sheehan, D. M., Derynck, R., et al. (1997). Expression of a truncated kinase-defective TGF-beta type II receptor in mouse skeletal tissue promotes terminal chondrocyte differentiation and osteoarthritis. Journal of Cell Biology, 139, 541-552.

Spiess, C., Beil, A., & Ehrmann, M. (1999). A temperature-dependent switch from chaperone to protease in a widely conserved heat shock protein. Cell, 97, 339-347.

Stern, C. D., Yu, R. T., Kakizuka, A., Kintner, C. R., Mathews, L. S., Vale, W. W., et al. (1995). Activin and its receptors during gastrulation and the later phases of mesoderm development in the chick embryo. Developmental Biology, 172, 192-205.

Strauch, K. L., & Beckwith, J. (1988). An Escherichia coli mutation preventing degradation of abnormal periplasm proteins. Proceedings of the National Academy of Sciences of the United States of America, 85, 1576-1580

Susuki, A., Chang, C., Yingling, J. M., Wang, X. F., & Hemmati-Brivanlou. (1997). Smad5 induces ventral fates in Xenopus embryo. Development Biology, 184, 402-405.

Thomsen, G. H. (1996). Xenopus mothers against decapentaplegic is an embry onic ventralizing agent that acts downstream of the BMP2/4 receptor. Development, 122, 2359-2366.

Tocharus, J., Tsuchiya, A., Kajikawa, M., Ueta, Y., Oka, C., & Kawaichi, M. (2004). Developmentally regulated expression of mouse HtrA3 and its role as an inhibitor of TGF-beta signaling. Development, Growth & Differentiation, 46, 257-274.

Wall, N. A., & Hogan, B. L. M. (1994). TGF-b related genes in development.

Current Biology, 4, 517-522.

Wharton, K., Ray, R., & Gelbart, W. (1993). An activity gradient of decapentaplegic is required for dorsal-ventral patterning in the Droso phila embryo. Development, 117, 807-822.

Yang, X., Chen, L., Xu, X., Li, C., Huang, C., & Deng, C. X. (2001). TGF-β/ Smad3 signals repress chondrocytes hypertrophic differentiation and are required for maintaining articular cartilage. Journal of Cell Biology, 153, 35-46.

Yingling, J., Das, P., Savage, C., Xhang, C., & Padgett, R. (1996). Mammalian dwarfins are phosphorylated in response to TGF-β and are implicated in the control of cell growth. Proceedings of the National Academy of Sciences of the United States of America, 93, 8940-8944.

Zimmermann, L. B., De Jesus-Escobar, J. M., & Harland, R. M. (1996). The spemann organizer signal noggin binds and inactivates bone morphoge netic protein 4. Cell, 86, 599-606.

Downloads

Published

2004-09-27