Neurochemical Abnormalities in Schizophrenia
Keywords:
schizophrenia, dopamine, gamma-aminobutyric acid, glutamate, serotoninAbstract
This article reviews the findings focusing on neurochemical abnormalities of several brain areas in schizophrenia. Almost all of the known neurotransmitters in the brain have been considered to be candidates for altered neurotransmission systems in schizophrenia. The first hypothesis is originated from the overactive dopaminergic neurotransmission which can induce changes of other neurotransmitters such as GABA, serotonin, and glutamate. The abnormalities of these neurotransmission have been observed as the response to symptoms or pathology of the disease.
References
Abi-Dargham, A., Laruelle, M., Aghajanian, G. K., Charney, D., & Krystal, J. (1997). The role of serotonin in the pathophysiology and treatment of schizophrenia. Journal of Neuropsychiatry and Clinical Neurosciences, 9, 1-17.
Akbarian, S., Kim, J. J., Potkin, S. G., Hagman, J. O., Tafazzoli, A., Bunney, W. E., et al. (1995). Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics. Archives of General Psychiatry, 52, 258-266. Allison, D. B., Mentore, J. L., Heo M., Chandler, L. P., Cappelleri, J. C., Infante, M. C., et al. (1999). Antipsychotic-induced weight gain: A comprehensive research synthesis. American Journal of Psychiatry, 156, 1686-1696.
American Psychiatric Association. (1994). Diagnostic and statistical manual of mental disorders (4th ed.) Washington, DC: American Psychiatric Press.
Aparicio-Legarza, M. I., Cutts, A. J., Davis, B., & Reynolds, G. P. (1997). Deficits of [3H]D-aspartate binding to glutamate uptake sites in striatal and accumbens tissue in patients with schizophrenia. Neuroscience Letters, 232, 13-16.
Arora, R. C., & Meltzer, H. Y. (1991). Serotonin2 (5-HT2) receptor binding in the frontal cortex of schizophrenic patients. Journal of Neural Transmission, 85, 19-29.
Beasley, C. L., & Reynolds, G. P. (1997). Parvalbumin-immunoreactive neurons are reduced in the prefrontal cortex of schizophrenics. Schizophrenia Research, 24, 349-355.
Benes, F. M., Khan, Y., Vincent, S. L., & Wickramasinghe, R. (1996). Differences in the subregional and cellular distribution of GABAA receptor binding in the hippocampal formation of schizophrenic brain. Synapse, 22, 338-349.
Benes, F. M., McSparren, J., Bird, E. D., SanGiovanni, J. P., & Vincent, S. L. (1991). Deficits in small interneurons in prefrontal and cingulate cortices of schizophrenic and schizoaffective patients. Archives of General Psychiatry, 48, 996-1001.
Benes, F. M., Vincent, S. L., Alsterberg, G., Bird, E. D., & SanGiovanni, J. P. (1992). Increased GABAA receptor binding in superficial layers of cingulate cortex in schizophrenics. Journal of Neuroscience, 12, 924-929.
Benes, F. M., Vincent, S. L., Marie, A., & Khan, Y. (1996). Up-regulation of GABAA receptor binding on neurons of the prefrontal cortex in schizophrenic subjects. Neuroscience, 75, 1021-1031.
Berry, N., Jobanputra, V, & Hemraj, P. (2003). Molecular genetics of schizophrenia: A critical review. Journal of Psychiatry Neuroscience, 28, 415-429.
Bleich, A., Brown, S. L., Kahn, R., & van Praag, H. M. (1988). The role of serotonin in schizophrenia. Schizophrenia Bulletin, 14, 297-315.
Breier, A., Su, T. P., Saunders, R., Carson, R. E., Kolachana, B. S., de Bartolomeis, A., et al. (1997). Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: Evidence from a novel positron emission tomography method. Proceedings of the National Academy of Sciences of the United States of America, 94, 2569-2574.
Bymaster, F. P., Calligaro, D. O., Falcone, J. F., Marsh, R. D., Moore, N. A. , Tye, N. C., et al. (1996). Radioreceptor binding profile of the atypical antipsychotic olanzapine. Neuropsychopharmacology, 14, 87-96.
Carlsson, A. (1988). The current status of the dopamine hypothesis of schizophrenia. Neuropsychopharmacology, 1, 179-186.
Carlsson, A., & Lindquist, M. (1963). Effect of chlorpromazine and haloperidol on the formation of 3-methoxytyramine in mouse brain. Acta Pharmacology, 20, 140-144.
Carlsson, M., & Carlsson, A. (1990). Interactions between glutamatergic and monoaminergic systems within the basal ganglia--implications for schizophrenia and Parkinson's disease. Trends in Neurosciences, 13, 272-276.
Castelao, J. F., Ferreira, L., Gelders, Y. G., & Heylen S. L. (1989). The efficacy of the D2 and 5-HT2 antagonist risperidone (R 64, 766) in the treatment of chronic psychosis. An open dose-finding study. Schizophrenia Research, 2, 411-415.
Choi, D. W., Koh, J. Y., & Peters, S. (1988). Pharmacology of glutamate neurotoxicity in cortical cell culture: Attenuation by NMDA antagonists. Journal of Neuroscience, 8,185-196.
Coffey, I. (1994). Options for the treatment of negative symptoms of schizophrenia. CNS drugs, 1, 107-118.
Collingridge, G. (1987). Synaptic plasticity: The role of NMDA receptors in learning and memory. Nature, 330, 604-605.
Court, J. A., Perry, E. K., Johnson, M., Piggott, M. A., Kerwin, J. A., Perry, R. H., et al. (1993). Regional patterns of cholinergic and glutamate activity in the developing and aging human brain. Brain Research Developmental Brain Research, 74, 73-82.
Coyle, J. T., & Puttfarcken, P. (1993). Oxidative stress, glutamate, and neurodegenerative disorders. Science, 262, 689-695.
Creese, I., Burt, D. R., & Snyder S. H. (1976). Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science, 192, 481-483. Crow, T. J. (1980). Positive and negative schizophrenic symptoms and the role of dopamine. British Journal of Psychiatry, 137, 383-386.
Crow, T. J. (1985). The two-syndrome concept: Origins and current status. Schizophrenia Bulletin, 11, 471-486.
Deakin, J. F., Slater, P., Simpson, M. D., Gilchrist, A. C., Skan, W. J., Royston, M. C., et al. (1989). Frontal cortical and left temporal glutamatergic dysfunction in schizophrenia. Journal of Neurochemistry, 52, 1781-1786.
Dean, B., & Hayes, W. (1996). Decreased frontal cortical serotonin 2A receptors in schizophrenia. Schizophrenia Research, 21, 133-139.
Eastwood, S. L., Kerwin, R. W., & Harrison. P. J. (1997). Immunoautoradiographic evidence for a loss of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate-prefering non-N-methyl-D-aspartate glutamate receptors within the medial temporal lobe in schizophrenia. Biological Psychiatry, 41, 636-643.
Eastwood, S. L., McDonald, B., Burnet, P. W., Beckwith, J. P., Kerwin, R. W., & Harrison, P. J. (1995). Decreased expression of mRNAs encoding non-NMDA glutamate receptors GluR1 and GluR2 in medial temporal lobe neurons in schizophrenia. Brain Research. Molecular Brain Research, 29, 211-223.
Egan, M. F., & Weinberger, D. R. (1997). Neurobiology of schizophrenia. Current Opinion in Neurobiology, 7, 701-707.
Farde, L., Nordstrom, A. L., Wiesel, F. A., Pauli, S., Halldin, C., & Sedvall, G. (1992). Positron emission tomographic analysis of central D1 and D2 dopamine receptor occupancy in patients treated with classical neuroleptics and clozapine. Relation to extrapyramidal side effects. Archives of General Psychiatry, 49, 538-544.
Gattaz, W. F., Gasser, T., & Beckmann H. (1985). Multidimensional analysis of the concentrations of 17 substances in the CSF of schizophrenics and controls. Biological Psychiatry, 20, 360-366.
Goff, D. C., & Wine, L. (1997). Glutamate in schizophrenia: Clinical and research implications. Schizophrenia Research, 27, 157-168.
Gothert, M., Propping, P., Bonisch, H., Bruss., M., Nothen, M. M. (1998). Genetic variation in human 5-HT receptors: Potential pathogenetic and pharmacological role. Annals of the New York Academy of Sciences, 861, 26-30.
Govitrapong, P., Chagkutip., J., Turakitwanakan, W., & Srikiatkhachon, A. (2000). Platelet 5-HT(2A) receptors in schizophrenic patients with and without neuroleptic treatment. Psychiatry Research, 96, 41-50.
Govitrapong, P., Mukda, S., Turakitwanakan, W., Dumrongphol, H., Chindaduangratn, C., & Sanvarinda, Y. (2002). Platelet serotonin transporter in schizophrenic patients with and without neuroleptic treatment. Neurochemistry International, 41, 209-216.
Grace, A. A. (1991). Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: A hypothesis for the etiology of schizophrenia. Neuroscience, 41, 1-24.
Gurevich, E. V., & Joyce, J. N. (1997). Alterations in the cortical serotonergic system in schizo phrenia: A postmortem study. Biological Psychiatry, 42, 529-545.
Gurevich, E. V., Bordelon, Y., Shapiro, R. M., Arnold, S. E., Gur, R. E., & Joyce, J. N. (1997). Mesolimbic dopamine D3 receptors and use of antipsychotics in patients with schizophrenia: A postmortem study. Archives of General Psychiatry, 54, 225-232.
Hanada, S., Mita, T., Nishino, N., Tanaka, C. (1987). [3H]muscimol binding sites increased in autopsied brains of chronic schizophrenics. Life Sciences, 40, 259-266.
Harrison, P. J. (1999). The neuropathology of schizophrenia: A critical review of the data and their interpretation. Brain, 122, 593-624.
Harrison, P. J., McLaughlin, D., & Kerwin, R. W. (1991). Decreased hippocampal expression of a glutamate receptor gene in schizophrenia. Lancet, 337, 450-452.
Hashimoto, T., Kitamura, N., Kajimoto, Y., Shirai, Y., Shirakawa, O., Mita, T., et al. (1993). Differential changes in serotonin 5-HT1A and 5-HT2 receptor binding in patients with chronic schizophrenia. Psychopharmacology, 112(Suppl.1), 35-39.
Humphries, C., Mortimer, A., Hirsch, S., & de Belleroche, J. (1996). NMDA receptor mRNA correlation with antemortem cognitive impairment in schizophrenia. Neuroreport, 7, 2051-2055.
Huntley, G. W., Vickers, J. C., & Morrison, J. H. (1994). Cellular and synaptic localization of NMDA and non-NMDA receptor subunits in neocortex: Organizational features related to cortical circuitry, function and disease. Trends in Neurosciences, 17, 536-543.
Jibson, M. D., & Tandon, R. (1998). New atypical antipsychotic medications. Journal of Psychiatric Research, 32, 215-228.
Joyce, J. N., Shane, A., Lexow, N., Winokur, A., Casanova, M. F., & Kleinman, J. E. (1993). Serotonin uptake sites and serotonin receptors are altered in the limbic system of schizophrenics. Neuropsychopharmacology, 8, 315-336.
Kapur, S., & Remington, G. (1996). Serotonin-dopamine interaction and its relevance to schizophrenia. American Journal of Psychiatry, 153, 466-476.
Kawanishi, Y., Tachikawa, H., & Suzuki, T. (2000). Pharmacogenomics and schizophrenia. European Journal of Pharmacology, 410, 227-241.
Kerwin, R., Patel, S., & Meldrum, B. (1990). Quantitative autoradiographic analysis of glutamate binding sites in the hippocampal formation in normal and schizophrenic brain post mortem.
Neuroscience, 39, 25-32.
Kim, J. S., Kornhuber, H. H., Schmid-Burgk, W., & Holzmuller B. (1980). Low cerebrospinal fluid glutamate in schizophrenic patients and a new hypothesis on schizophrenia. Neuroscience Letters, 20, 379-382.
Kornhuber, J., Mack-Burkhardt, F., Riederer, P., Hebenstreit, G. F., Reynolds, G. P., Andrews, H. B., et al. (1989). [3H]MK-801 binding sites in postmortem brain regions of schizophrenic patients. Journal of Neural Transmission, 77, 231-236.
Korpi, E. R., Kaufmann, C. A., Marnela, K. M. & Weinberger, D. R. (1987). Cerebrospinal fluid amino acid concentrations in chronic schizophrenia. Psychiatry Research, 20, 337-345.
Kristensen, J. D., Svensson, B., & Gordh, T. (1992). The NMDA-receptor antagonist CPP abolishes neurogenic 'wind-up pain' after intrathecal administration in humans. Pain, 51, 249-253.
Laruelle, M., Abi-Dargham, A., van Dyck, C. H., Gil, R., D’Souza, C. D., Erdos, J., et al. (1992). Single photon emission computerized tomography imaging of amphetamine-induced dopamine release in drug-free schizophrenic subjects. Proceedings of the National Academy of Sciences of the United States of America, 93, 9235-9240.
Le Corre, S., Harper, C. G., Lopez, P., Ward, P., & Catts, S. (2000). Increased levels of expression of an NMDARI splice variant in the superior temporal gyrus in schizophrenia. Neuroreport, 11, 983-986.
Lewis, R., Kapur, S., Jones, C., DaSilva, J., Brown, G. M., Wilson, A. A., et al. (1999). Serotonin 5-HT2 receptors in schizophrenia: A PET study using [18F]setoperone in neuroleptic-na?ve patients and normal subjects. American Journal of Psychiatry, 156, 72-78.
Lieberman, J. A., Golden, R., Stroup, S., & McEvoy J. (2000). Drugs of the psychopharmacological revolution in clinical psychiatry. Psychiatric Services, 51, 1254-1258.
Macciardi, F., Lucca, A., Catalano, M., Marino, C., Zanardi, R., & Smeraldi, E. (1990). Amino acid patterns in schizophrenia: some new findings. Psychiatry Research, 32, 63-70.
McCullumsmith, R. E., & Meador-Woodruff, J. H. (2002) Striatal excitatory amino acid transporter transcript expression in schizophrenia, bipolar disorder, and major depressive disorder. Neuropsychopharmacology, 26, 368-75.
McDonald, J. W., & Johnston, M. V. (1990). Pharmacology of N-methyl-D-aspartate-induced brain injury in an in vivo perinatal rat model. Synapse, 6,179-188.
Meltzer, H. Y. (1995). Role of serotonin in the action of atypical antipsychotic drugs. Clinical Neuroscience, 3, 64-75.
Meltzer, H. Y., Li, Z., Kaneda, Y., & Ichikawa, J. (2003). Serotonin receptors: Their key role in drugs to treat schizophrenia. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 27, 1159-1172.
Meltzer, H. Y., Matsubara, S., & Lee, J. C. (1989). The ratios of serotonin2 and dopamine2 affinities differentiate atypical and typical antipsychotic drugs. Psychopharmacology Bulletin, 25, 390-392.
Miyamoto, S., Duncan, G. E., Marx, C. E., & Lieberman, J. A. (2005). Treatments for schizophrenia: a critical review of pharmacology and mechanisms of action of antipsychotic drugs. Molecular Psychiatry, 10, 79-104.
Neale, J. H., Bzdega, T., & Wroblewska, B. (2000). N-Acetylaspartylglutamate: The most abundant peptide neurotransmitter in the mammalian central nervous system. Journal of Neurochemistry, 75, 443-452.
Nishikawa, T., Takashima, M., & Toru, M. (1983). Increased [3H]kainic acid binding in the prefrontal cortex in schizophrenia. Neuroscience Letters, 40, 245-250.
Nudmamud, S., & Reynolds, G. P. (2001). Increased density of glutamate/N-methyl-D-aspartate receptors in superior temporal cortex in schizophrenia. Neuroscience Letters, 304, 9-12.
Nudmamud, S., Reynolds, L. M., & Reynolds, G. P. (2003). N-Acetylaspartate and N-Acetylaspartylglutamate deficits in superior temporal cortex in schizophrenia and bipolar disorder: A postmortem study. Biological Psychiatry, 53, 1138-1141.
Nudmamud-Thanoi, S., & Reynolds, G. P. (2004). The NR1 subunit of the glutamate/NMDA receptor in the superior temporal cortex in schizophrenia and affective disorders. Neuroscience Letters, 372, 173-177.
Ohara, K., Nagai, M., Tani, K., Tsukamoto, T., & Ohara, K. (1999). Schizophrenia and the serotonin 2A receptor promoter polymorphism. Psychiatry Research, 85, 221-224.
Ohnuma, T., Augood, S. J., Arai, H., McKenna, P. J., & Emson, P. C. (1998). Expression of the human excitatory amino acid transporter 2 and metabotropic glutamate receptors 3 and 5 in the prefrontal cortex from normal individuals and patients with schizophrenia. Brain Research. Molecular Brain Research, 56, 207-217.
Okubo, Y., Suhara, T., Suzuki, K., Kobayashi, K., Inoue, O., Terasaki, O., et al. (1997). Decreased prefrontal dopamine D1 receptors in schizophrenia revealed by PET. Nature, 385, 634-636.
Popli, A. P., Konicki, P. E., Jurjus, G. J., Fuller, M. A., & Jaskiw, G. E. (1997). Clozapine and associated diabetes mellitus. Journal of Clinical Psychiatry, 58, 108-111.
Porter, R. H., Eastwood, S. L., & Harrison, P. J. (1997). Distribution of kainate receptor subunit mRNAs in human hippocampus, neocortex and cerebellum, and bilateral reduction of hippocampal GluR6 and KA2 transcripts in schizophrenia. Brain Research, 751, 217-231.
Randrup, A., & Munkvad, I. (1965). Special antagonism of amphetamine-induced abnormal behaviour. Psychopharmacologia, 7, 416-422.
Remington, G. (2003). Understanding antipsychotic "atypicality": A clinical and pharmacological moving target. Journal of Psychiatry Neuroscience, 28, 275-284.
Reynolds, G. P, Czudek, C., & Andrews, H. B. (1990). Deficit and hemispheric asymmetry of GABA uptake sites in the hippocampus in schizophrenia. Biological Psychiatry, 27, 1038-1044.
Reynolds, G. P., & Czudek, C. (1995). New approaches to the drug treatment of schizophrenia. Advances in Pharmacology, 32, 461-503.
Reynolds, G.P. (1996). The importance of dopamine D4 receptors in the action of and development of antipsychotic agents. Drug, 51, 7-11.
Seeman, P., & Lee, T. (1975). Antipsychotic drugs: Direct correlation between clinical potency and presynaptic action on dopamine neurons. Science, 188, 1217-1219.
Seeman, P., Guan, H. C., & Van Tol, H. H. (1993). Dopamine D4 receptors elevated in schizophrenia. Nature, 365, 441-445.
Seeman, P., Guan, H. C., & Van Tol, H. H. (1995). Schizophrenia: Elevation of dopamine D4-like sites, using [3H]nemonapride and [125I]epidepride. European Journal of Pharmacology, 286, R3-5.
Selemon, L. D., Rajkowska, G., & Goldman-Rakic, P. S. (1995). Abnormally high neuronal density in the schizophrenic cortex: A morphometric analysis of prefrontal area 9 and occipital area 17. Archives of General Psychiatry, 52, 805-820.
Shayegan, D. K., & Stahl, S. M. (2004). Atypical antipsychotics: matching receptor profile to individual patient's clinical profile. CNS Spectrum, 9, 6-14.
Simpson, M. D., Slater, P., & Deakin, J. F. (1998). Comparison of glutamate and gamma-aminobutyric acid uptake binding sites in frontal and temporal lobes in schizophrenia. Biological Psychiatry, 44, 423-427.
Simpson, M. D., Slater, P., Deakin, J. F., Royston, M. C., & Skan, W. J. (1989). Reduced GABA uptake sites in the temporal lobe in schizophrenia. Neuroscience Letters, 107, 211-215.
Simpson, M. D., Slater, P., Royston, M. C., & Deakin, J. F. (1992). Regionally selective deficits in uptake sites for glutamate and gamma-aminobutyric acid in the basal ganglia in schizophrenia. Psychiatry Research, 42, 273-282.
Simpson, M. D., Lubman, D. I., Slater, P., & Deakin, J. F. (1996). Autoradiography with [3H]8-OH-DPAT reveals increases in 5-HT(1A) receptors in ventral prefrontal cortex in schizophrenia. Biological Psychiatry, 39, 919-28.
Soares, J. C., & Innis, R. B. (1999). Neurochemical brain imaging investigations of schizophrenia. Biological Psychiatry, 46, 600-615.
Strange, P. G. (1992). Brain biochemistry and brain disorders. Oxford: Oxford University Press.
Tocco, G., Annala, A. J., Baudry, M., & Thompson, R. F. (1992). Learning of a hippocampal-dependent conditioning task changes the binding properties of AMPA receptors in rabbit hippocampus. Behavioral and Neural Biology, 58, 222-231. Toru, M., Watanabe, S., Shibuya, H., Nishikawa, T., Noda, K., Mitsushio, H., et al. (1988). Neurotransmitters, receptors and neuropeptides in post-mortem brains of chronic schizophrenic patients. Acta Psychiatrica Scandinavica, 78, 121-137.
Trichard, C., Paillere-Martinot, M. L., Attar-Levy, D., Blin, J., Feline, A., & Martinot J. L. (1998). No serotonin 5-HT2A receptor density abnormality in the cortex of schizophrenic patients studied with PET. Schizophrenia Research, 31, 13-7.
Tsai, G., & Coyle J. T. (1995). N-acetylaspartate in neuropsychiatric disorders. Progress in Neurobiology, 46, 531-540.
Wirshing, D. A., Spellberg, B. J., Erhart, S. M., Marder, S. R., & Wirshing, W. C. (1998). Novel antipsychotics and new onset diabetes. Biological Psychiatry, 44, 778-783.
Woo, T. U., Whitehead, R. E., Melchitzky, D. S., & Lewis, D. A. (1998). A subclass of prefrontal gamma-aminobutyric acid axon terminals are selectively altered in schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 95, 5341-5346.
Zhang, Z. J., & Reynolds, G. P. (2002). Selective decrease in the relative density of parvalbumin-immunoreactive neurons in the hippocampus in schizophrenia. Schizophrenia Research, 55, 1-10
Downloads
Published
Issue
Section
License
Copyright (c) 2005 Naresuan University Journal: Science and Technology
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.