Cancer Research: Computer Simulation of Tumor Growth with Immune Response

Authors

  • Ankana Boondirek Department of Mathematics, Burapha University, Chonburi 20131, Thailand

Keywords:

Cancer modeling, Stochastic model, Cellular automaton model, Gompertz function, Immune response

Abstract

A discrete model for the growth of an avascular tumor on a three­dimensional square lattice has been developed. A cellular automata method for tumor growth based on microscopic description of the immune system response, the cell proliferation, the cell death and its degradation is used to simulate the growth. The Monte­Carlo method is be applied to this model. The results give a growth curve which is shown to qualitatively agree well with experimental result.

References

Qi, A.S., Zheng, X., Du, C. Y. & An, B. S. (1993). A

cellular automaton of cancerous growth. J. theor. Biol, 161, 1­12.

Kansal, A. R., Torquato, S., Harsh, G. R., Chiocca, E. A. & Deisboeck, T. S. (2000). Cellular automaton of idealized brain tumor growth dynamics .Biosystems, 55, 119­127.

Kansal, A. R., Torquato, S., Harsh, G. R., Chiocca, E. A. & Deisboeck, T. S. (2000). Simulated brain tumor growth dynamics using a three­dimensional cellular automaton. J. theor. Biol, 203, 367­382.

Boondirek, A., Lenbury, Y., Woong­ekkabut, J., Triampo,

W., Tang, I. M., & Picha, P. A. (2006). Stochastic model of cancer growth with immune response. Korean Physical Society, 49(4), 1652­1666.

Kirschner, D. & Panetta, J. C. (1998). Modelling immunotherapy of the tumor­immune interaction. J. Math. Bio, 37, 235­252.

Ferreira Jr, S. C., Martins, M. L. & Vilela, M. J. (1998). A growth model for promary cancer. Physica A, 261, 569­ 580.

Ferreira Jr, S.C., Martins, M. L. & Vilela, M. J. (1999). A growth model for primarycancer (II), New rules progress curves and morphology transitions. Physica A, 271, 245­256.

Voitikova, M. V. (1998). Cellular automaton model for immunology of tumor growth.

Smolle, J., Soyer, H. P., Smolle­Juettner, F. M., Stettner, H., & Kerl, H. (1990). Computer simulation of tumour cell motility and proliferation. Path. Res. Pract, 186, 467­472.

Duchting, W. & Vogelsaenger, T. (1981). Three­ dimensional pattern generation applied to spheroidal tumor growth in a nutrient medium. Int. J. Bio­Medical Computing, 12, 377­392.

Bellomo, N., & Preziosi, L. (2000). Modelling an mathematical problems related to tumor evolution and its interaction with the immune system. Math. Comput. Modelling, 32, 413­452.

Galach, M. (2003). Dynamics of the tumor­immune system competition­the effect of time delay. Int. J. Appl. Math. Comput. Sci, 13(3), 395­406.

Alarcon, T., Byrne, H. M., & Maini, P. K. (2003). A cellular automaton model for tumour growth in inhomogeneous environment. J. theor. Biol, 225, 257­ 274.

Buric, N. & Todorovic, D. (2002). Dynamics of delay­differential equations modelling immunology of tumor growth. Chaos, Solitons and Fractals, 13, 645­ 665.

Steel, G. G. (1977). Growth kinetics of tumours. NewYork: Clarendon press.

Matzavinos, A. & Chaplain, A. J. (2004). Travelling­ wave analysis of a model of the immune response to cancer. C.R .Biologies, 327, 995­1008.

Kuznetsoov V. A. & Taylor M. A. (1994). Nonlinear dynamics of immunogenic tumors: Parameter estimation and global bifurcation analysis. Bull. Math. Biol, 56(2), 295­321.

Bru, A., Albertos, S., Subiza, J. L., Garcia­Asenjo, J. L., & Bru, I. (2003). The universal dynamics of tumor growth. Biophysic Journal, 85, 2948­2961.

Preziosi, L. (2003). Cancer modeling and simulation.

Chapman & Hall/CRC,

Waliszewski, P. & Konarski, J. (2002). The Gompertzian curve reveals fractal properties of tumor growth. Chaos, Solitons and Fractals, 16, 665­674.

Downloads

Published

2009-12-15

Issue

Section

Science and Technology