Preparation and physical properties of chitosan scaffolds coated collagen from the skin of shark for bone tissue engineering
Keywords:
Cleft lip and palate,, Bone tissue engineering, Chitosan scaffold, CollagenAbstract
Secondary alveolar bone grafting is routinely practiced as the alveolar cleft treatment in cleft lip and cleft palate patient. Most commonly, bone for alveolar bone grafting is harvested from the iliac crests. As such, iliac crest harvesting procedures can result in paresthesia, hypersensitivity, infection and pelvic instability. In order to avoid these adverse effects, tissue engineering strategies may eliminate donor site morbidity by resorbable collagen sponge resulted in reduced donor site morbidity and decreased donor site pain intensity and frequency. The aim of this study was to investigate the effects of pepsin soluble collagen (PSC) from skin of brownbanded bamboo shark on the physical property of chitosan scaffolds. The collagen was characterized as type I collagen by Fourier transform infrared (FTIR) spectra and physical properties were studied in terms of morphology, water swelling and biodegradation of scaffolds. Physical property data were analyzed by Mann-Whitney U Test and using SPSS statistics version 16.0 program. The result of FTIR showed triple-helical structure of collagen type I. SEM demonstrated homogeneous microstructure and presence of interconnected micropores of both groups. Water swelling of PSC coated chitosan scaffolds was lower than chitosan scaffolds (p<0.001), whereas biodegradation tend to be lower (p>0.05). Biodegradation rates of both groups between different time points were statistically significant (p<0.05). In conclusion, PSC collagens improve physical properties of our novel chitosan scaffolds. (Supported by PSU grant # 950/427)
References
Aranaz, I., Mengibar, M., Harris, R., Panos, I., Miralles, B., Acosta, N., … Heras, A. (2009). Functional Characterization of Chitin and Chitosan. Current Chemical Biology, 3(2), 203–230. doi: org/10.2174/187231 309788166415
Arpornmaeklong, P., Suwatwirote, N., Pripatnanont, P., & Oungbho, K. (2007). Growth and differentiation of mouse osteoblasts on chitosan-collagensponges. International Journal of Oral and Maxillofacial Surgery, 36(4), 328–337. doi: org/10.1016/ j.ijom.2006.09.023
Becker, C., & Jakse, G. (2007). Stem cells for regeneration of urological structures. European Urology, 51(5), 1217–1228. doi: org/10.1016/ j.eururo.2007.01.029
Benjakul, S., Thiansilakul, Y., Visessanguan, W., Roytrakul, S., Kishimura, H., Prodpran, T., & Meesane, J. (2010). Extraction and characterisation of pepsin-solubilised collagens from the skin of bigeye snapper (Priacanthus tayenus and Priacanthus macracanthus). Journal of the Science of Food and Agriculture, 90(1), 132–138. doi: org/10.1002/ jsfa.3795
Bryan, M. A., Brauner, J. W., Anderle, G., Flach, C. R., Brodsky, B., & Mendelsohn, R. (2007). FTIR studies of collagen model peptides: complementary experimental and simulation approaches to conformation and unfolding. Journal of the American Chemical Society, 129(25), 7877–7884. doi: org/10.1021/ja071154i
Cho-Lee, G.-Y., García-Díez, E.-M., Nunes, R.-A., Martí-Pagès, C., Sieira-Gil, R., & Rivera-Baró, A. (2013). Review of secondary alveolar cleft repair. Annals of Maxillofacial Surgery, 3(1), 46–50. doi: org/10.4103/2231-0746.110083
Drosse, I., Volkmer, E., Capanna, R., De Biase, P., Mutschler, W., & Schieker, M. (2008). Tissue engineering for bone defect healing: an update on a multi-component approach. Injury, 39 Suppl 2, S9–20. doi: org/10.1016/S0020-1383(08)70011-1
Goudy, S., Lott, D., Burton, R., Wheeler, J., & Canady, J. (2009). Secondary alveolar bone grafting: outcomes, revisions, and new applications. The Cleft Palate-Craniofacial Journal: Official Publication of the American Cleft Palate-Craniofacial Association, 46(6), 610–612. doi: org/10.1597/ 08-126.1
Janssen, N. G., Weijs, W. L. J., Koole, R., Rosenberg, A. J. W. P., & Meijer, G. J. (2014). Tissue engineering strategies for alveolar cleft reconstruction: a systematic review of the literature. Clinical Oral Investigations, 18(1), 219–226. doi: org/10.1007/ s00784-013-0947-x
Kim, S.-J., Kim, M.-R., Oh, J.-S., Han, I., & Shin,
S.-W. (2009). Effects of polycaprolactone-tricalcium phosphate, recombinant human bone morphogenetic protein-2 and dog mesenchymal stem cells on bone formation: pilot study in dogs. Yonsei Medical Journal, 50(6), 825–831. doi: org/10. 3349/ymj.2009.50.6.825
Kortebein, M. J., Nelson, C. L., & Sadove, A. M. (1991). Retrospective analysis of 135 secondary alveolar cleft grafts using iliac or calvarial bone. Journal of Oral and Maxillofacial Surgery: Official Journal of the American Association of Oral and Maxillofacial Surgeons, 49(5), 493–498.
Köse, G. T., Kenar, H., Hasirci, N., & Hasirci, V. (2003). Macroporous poly(3-hydroxybutyrate -co-3-hydroxyvalerate) matrices for bone tissue engineering. Biomaterials, 24(11), 1949–1958.
Krimm, S., & Bandekar, J. (1986). Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. Advances in Protein Chemistry, 38, 181–364.
Matsuura, T., Tokutomi, K., Sasaki, M., Katafuchi, M., Mizumachi, E., & Sato, H. (2014). Distinct Characteristics of Mandibular Bone Collagen Relative to Long Bone Collagen: Relevance to Clinical Dentistry. BioMed Research International, 2014, e769414. doi: org/10.1155/2014/769414
Meyer, U., Joos, U., & Wiesmann, H. P. (2004). Biological and biophysical principles in extracorporal bone tissue engineering. Part III. International Journal of Oral and Maxillofacial Surgery, 33(7), 635–641. doi: org/10.1016/j.ijom.2004.04.006
Moreau, J. L., Caccamese, J. F., Coletti, D. P., Sauk, J. J., & Fisher, J. P. (2007). Tissue engineering solutions for cleft palates. Journal of Oral and Maxillofacial Surgery: Official Journal of the American Association of Oral and Maxillofacial Surgeons, 65(12), 2503–2511. doi: org/10.1016/ j.joms. 2007.06.648
Muyonga, J. H., Cole, C. G. B., & Duodu, K. G. (2004). Characterisation of acid soluble collagen from skins of young and adult Nile perch (Lates niloticus). Food Chemistry, 85(1), 81–89. doi: org/10.1016/j.food chem.2003.06.006
Nagai, T., Suzuki, N., & Nagashima, T. (2008). Collagen from common minke whale (Balaenoptera acutorostrata) unesu. Food Chemistry, 111(2), 296–301. doi: org/10.1016/j.foodchem.2008.03. 087
Ngamwongsatit, P., Banada, P. P., Panbangred, W., & Bhunia, A. K. (2008). WST-1-based cell cytotoxicity assay as a substitute for MTT-based assay for rapid detection of toxigenic Bacillus species using CHO cell line. Journal of Microbiological Methods, 73(3), 211–215. doi: org/10.1016/ j.mimet. 2008.03.002
Park, S.-N., Lee, H.-J., Lee, K.-H., & Suh, H. (2003). Biological characterization of EDC-crosslinked collagen-hyaluronic acid matrix in dermal tissue restoration. Biomaterials, 24(9), 1631–1641.
Park, S.-N., Park, J.-C., Kim, H. O., Song, M. J., & Suh, H. (2002). Characterization of porous collagen/hyaluronic acid scaffold modified by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide cross-linking. Biomaterials, 23(4), 1205–1212.
Payne, K. J., & Veis, A. (1988). Fourier transform ir spectroscopy of collagen and gelatin solutions: Deconvolution of the amide I band for conformational studies. Biopolymers, 27(11), 1749–1760. doi: org/10. 1002/bip.360271105
Peppo, G. M. de, Marcos-Campos, I., Kahler, D. J., Alsalman, D., Shang, L., Vunjak-Novakovic, G., & Marolt, D. (2013). Engineering bone tissue substitutes from human induced pluripotent stem cells. Proceedings of the National Academy of Sciences, 110(21), 8680–8685. doi: org/10. 1073/pnas.1301190110
Shanmugasundaram, N., Ravichandran, P., Neelakanta Reddy, P., Ramamurty, N., Pal, S., & Panduranga Rao, K. (2001). Collagen–chitosan polymeric scaffolds for the in vitro culture of human epidermoid carcinoma cells. Biomaterials, 22(14), 1943–1951. doi: org/10.1016/S0142-9612(00) 00220-9
Swan, M. C. (2006). Morbidity at the iliac crest donor site following bone grafting of the cleft alveolus. The British Journal of Oral & Maxillofacial Surgery, 44(2), 129–33. doi: org/ 10.1016/j.bjoms. 2005.04.015
Thuaksuban, N., Nuntanaranont, T., Pattanachot, W., Suttapreyasri, S., & Cheung, L. K. (2011). Biodegradable polycaprolactone-chitosan three-dimensional scaffolds fabricated by melt stretching and multilayer deposition for bone tissue engineering: assessment of the physical properties and cellular response. Biomedical Materials (Bristol, England), 6(1), 015009. doi: org/10.1088/1748-6041/6/ 1/015009
Vacanti, J. P., & Langer, R. (1999). Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet (London, England), 354 (Suppl 1), SI32–34.
Vårum, K. M., Myhr, M. M., Hjerde, R. J., & Smidsrød, O. (1997). In vitro degradation rates of partially N-acetylated chitosans in human serum. Carbohydrate Research, 299(1-2), 99–101.
Wang, L., An, X., Xin, Z., Zhao, L., & Hu, Q. (2007). Isolation and characterization of collagen from the skin of deep-sea redfish (Sebastes mentella). Journal of Food Science, 72(8), E450–455. doi: org/10.1111/j.1750-3841.2007.00478.x
Yan, L.-P., Wang, Y.-J., Ren, L., Wu, G., Caridade, S. G., Fan, J.-B., … Reis, R. L. (2010). Genipin-cross-linked collagen/chitosan biomimetic scaffolds for articular cartilage tissue engineering applications. Journal of Biomedical Materials Research Part A, 95A(2), 465–475. doi: org/10. 1002/jbm.a.32869
Younger, E. M., & Chapman, M. W. (1989). Morbidity at bone graft donor sites. Journal of Orthopaedic Trauma, 3(3), 192–195.
Downloads
Published
Issue
Section
License
Copyright (c) 2016 Naresuan University Journal: Science and Technology
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.