Preparation and physical properties of chitosan scaffolds coated collagen from the skin of shark for bone tissue engineering

Authors

  • Kanokwan Srikhum Department of Preventive dentistry, Faculty of Dentistry, Prince of Songkla University, Hatyai, Songkhla, Thailand 90110
  • Jirut Meesane Biological Materials for Medicine Research Unit (BMM), Faculty of Medicine, Prince of Songkla University, Hatyai, Songkhla, Thailand 90110
  • Suttatip Kamolmatyakul Department of Preventive dentistry, Faculty of Dentistry, Prince of Songkla University, Hatyai, Songkhla, Thailand 90110

Keywords:

Cleft lip and palate,, Bone tissue engineering, Chitosan scaffold, Collagen

Abstract

Secondary alveolar bone grafting is routinely practiced as the alveolar cleft treatment in cleft lip and cleft palate patient. Most commonly, bone for alveolar bone grafting is harvested from the iliac crests. As such, iliac crest harvesting procedures can result in paresthesia, hypersensitivity, infection and pelvic instability. In order to avoid these adverse effects, tissue engineering strategies may eliminate donor site morbidity by resorbable collagen sponge resulted in reduced donor site morbidity and decreased donor site pain intensity and frequency. The aim of this study was to investigate the effects of pepsin soluble collagen (PSC) from skin of brownbanded bamboo shark on the physical property of chitosan scaffolds. The collagen was characterized as type I collagen by Fourier transform infrared (FTIR) spectra and physical properties were studied in terms of morphology, water swelling and biodegradation of scaffolds. Physical property data were analyzed by Mann-Whitney U Test and using SPSS statistics version 16.0 program. The result of FTIR showed triple-helical structure of collagen type I. SEM demonstrated homogeneous microstructure and presence of interconnected micropores of both groups. Water swelling of PSC coated chitosan scaffolds was lower than chitosan scaffolds (p<0.001), whereas biodegradation tend to be lower (p>0.05). Biodegradation rates of both groups between different time points were statistically significant (p<0.05). In conclusion, PSC collagens improve physical properties of our novel chitosan scaffolds. (Supported by PSU grant # 950/427)

References

Aranaz, I., Mengibar, M., Harris, R., Panos, I., Miralles, B., Acosta, N., … Heras, A. (2009). Functional Characterization of Chitin and Chitosan. Current Chemical Biology, 3(2), 203–230. doi: org/10.2174/187231 309788166415

Arpornmaeklong, P., Suwatwirote, N., Pripatnanont, P., & Oungbho, K. (2007). Growth and differentiation of mouse osteoblasts on chitosan-collagensponges. International Journal of Oral and Maxillofacial Surgery, 36(4), 328–337. doi: org/10.1016/ j.ijom.2006.09.023

Becker, C., & Jakse, G. (2007). Stem cells for regeneration of urological structures. European Urology, 51(5), 1217–1228. doi: org/10.1016/ j.eururo.2007.01.029

Benjakul, S., Thiansilakul, Y., Visessanguan, W., Roytrakul, S., Kishimura, H., Prodpran, T., & Meesane, J. (2010). Extraction and characterisation of pepsin-solubilised collagens from the skin of bigeye snapper (Priacanthus tayenus and Priacanthus macracanthus). Journal of the Science of Food and Agriculture, 90(1), 132–138. doi: org/10.1002/ jsfa.3795

Bryan, M. A., Brauner, J. W., Anderle, G., Flach, C. R., Brodsky, B., & Mendelsohn, R. (2007). FTIR studies of collagen model peptides: complementary experimental and simulation approaches to conformation and unfolding. Journal of the American Chemical Society, 129(25), 7877–7884. doi: org/10.1021/ja071154i

Cho-Lee, G.-Y., García-Díez, E.-M., Nunes, R.-A., Martí-Pagès, C., Sieira-Gil, R., & Rivera-Baró, A. (2013). Review of secondary alveolar cleft repair. Annals of Maxillofacial Surgery, 3(1), 46–50. doi: org/10.4103/2231-0746.110083

Drosse, I., Volkmer, E., Capanna, R., De Biase, P., Mutschler, W., & Schieker, M. (2008). Tissue engineering for bone defect healing: an update on a multi-component approach. Injury, 39 Suppl 2, S9–20. doi: org/10.1016/S0020-1383(08)70011-1

Goudy, S., Lott, D., Burton, R., Wheeler, J., & Canady, J. (2009). Secondary alveolar bone grafting: outcomes, revisions, and new applications. The Cleft Palate-Craniofacial Journal: Official Publication of the American Cleft Palate-Craniofacial Association, 46(6), 610–612. doi: org/10.1597/ 08-126.1

Janssen, N. G., Weijs, W. L. J., Koole, R., Rosenberg, A. J. W. P., & Meijer, G. J. (2014). Tissue engineering strategies for alveolar cleft reconstruction: a systematic review of the literature. Clinical Oral Investigations, 18(1), 219–226. doi: org/10.1007/ s00784-013-0947-x

Kim, S.-J., Kim, M.-R., Oh, J.-S., Han, I., & Shin,

S.-W. (2009). Effects of polycaprolactone-tricalcium phosphate, recombinant human bone morphogenetic protein-2 and dog mesenchymal stem cells on bone formation: pilot study in dogs. Yonsei Medical Journal, 50(6), 825–831. doi: org/10. 3349/ymj.2009.50.6.825

Kortebein, M. J., Nelson, C. L., & Sadove, A. M. (1991). Retrospective analysis of 135 secondary alveolar cleft grafts using iliac or calvarial bone. Journal of Oral and Maxillofacial Surgery: Official Journal of the American Association of Oral and Maxillofacial Surgeons, 49(5), 493–498.

Köse, G. T., Kenar, H., Hasirci, N., & Hasirci, V. (2003). Macroporous poly(3-hydroxybutyrate -co-3-hydroxyvalerate) matrices for bone tissue engineering. Biomaterials, 24(11), 1949–1958.

Krimm, S., & Bandekar, J. (1986). Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. Advances in Protein Chemistry, 38, 181–364.

Matsuura, T., Tokutomi, K., Sasaki, M., Katafuchi, M., Mizumachi, E., & Sato, H. (2014). Distinct Characteristics of Mandibular Bone Collagen Relative to Long Bone Collagen: Relevance to Clinical Dentistry. BioMed Research International, 2014, e769414. doi: org/10.1155/2014/769414

Meyer, U., Joos, U., & Wiesmann, H. P. (2004). Biological and biophysical principles in extracorporal bone tissue engineering. Part III. International Journal of Oral and Maxillofacial Surgery, 33(7), 635–641. doi: org/10.1016/j.ijom.2004.04.006

Moreau, J. L., Caccamese, J. F., Coletti, D. P., Sauk, J. J., & Fisher, J. P. (2007). Tissue engineering solutions for cleft palates. Journal of Oral and Maxillofacial Surgery: Official Journal of the American Association of Oral and Maxillofacial Surgeons, 65(12), 2503–2511. doi: org/10.1016/ j.joms. 2007.06.648

Muyonga, J. H., Cole, C. G. B., & Duodu, K. G. (2004). Characterisation of acid soluble collagen from skins of young and adult Nile perch (Lates niloticus). Food Chemistry, 85(1), 81–89. doi: org/10.1016/j.food chem.2003.06.006

Nagai, T., Suzuki, N., & Nagashima, T. (2008). Collagen from common minke whale (Balaenoptera acutorostrata) unesu. Food Chemistry, 111(2), 296–301. doi: org/10.1016/j.foodchem.2008.03. 087

Ngamwongsatit, P., Banada, P. P., Panbangred, W., & Bhunia, A. K. (2008). WST-1-based cell cytotoxicity assay as a substitute for MTT-based assay for rapid detection of toxigenic Bacillus species using CHO cell line. Journal of Microbiological Methods, 73(3), 211–215. doi: org/10.1016/ j.mimet. 2008.03.002

Park, S.-N., Lee, H.-J., Lee, K.-H., & Suh, H. (2003). Biological characterization of EDC-crosslinked collagen-hyaluronic acid matrix in dermal tissue restoration. Biomaterials, 24(9), 1631–1641.

Park, S.-N., Park, J.-C., Kim, H. O., Song, M. J., & Suh, H. (2002). Characterization of porous collagen/hyaluronic acid scaffold modified by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide cross-linking. Biomaterials, 23(4), 1205–1212.

Payne, K. J., & Veis, A. (1988). Fourier transform ir spectroscopy of collagen and gelatin solutions: Deconvolution of the amide I band for conformational studies. Biopolymers, 27(11), 1749–1760. doi: org/10. 1002/bip.360271105

Peppo, G. M. de, Marcos-Campos, I., Kahler, D. J., Alsalman, D., Shang, L., Vunjak-Novakovic, G., & Marolt, D. (2013). Engineering bone tissue substitutes from human induced pluripotent stem cells. Proceedings of the National Academy of Sciences, 110(21), 8680–8685. doi: org/10. 1073/pnas.1301190110

Shanmugasundaram, N., Ravichandran, P., Neelakanta Reddy, P., Ramamurty, N., Pal, S., & Panduranga Rao, K. (2001). Collagen–chitosan polymeric scaffolds for the in vitro culture of human epidermoid carcinoma cells. Biomaterials, 22(14), 1943–1951. doi: org/10.1016/S0142-9612(00) 00220-9

Swan, M. C. (2006). Morbidity at the iliac crest donor site following bone grafting of the cleft alveolus. The British Journal of Oral & Maxillofacial Surgery, 44(2), 129–33. doi: org/ 10.1016/j.bjoms. 2005.04.015

Thuaksuban, N., Nuntanaranont, T., Pattanachot, W., Suttapreyasri, S., & Cheung, L. K. (2011). Biodegradable polycaprolactone-chitosan three-dimensional scaffolds fabricated by melt stretching and multilayer deposition for bone tissue engineering: assessment of the physical properties and cellular response. Biomedical Materials (Bristol, England), 6(1), 015009. doi: org/10.1088/1748-6041/6/ 1/015009

Vacanti, J. P., & Langer, R. (1999). Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet (London, England), 354 (Suppl 1), SI32–34.

Vårum, K. M., Myhr, M. M., Hjerde, R. J., & Smidsrød, O. (1997). In vitro degradation rates of partially N-acetylated chitosans in human serum. Carbohydrate Research, 299(1-2), 99–101.

Wang, L., An, X., Xin, Z., Zhao, L., & Hu, Q. (2007). Isolation and characterization of collagen from the skin of deep-sea redfish (Sebastes mentella). Journal of Food Science, 72(8), E450–455. doi: org/10.1111/j.1750-3841.2007.00478.x

Yan, L.-P., Wang, Y.-J., Ren, L., Wu, G., Caridade, S. G., Fan, J.-B., … Reis, R. L. (2010). Genipin-cross-linked collagen/chitosan biomimetic scaffolds for articular cartilage tissue engineering applications. Journal of Biomedical Materials Research Part A, 95A(2), 465–475. doi: org/10. 1002/jbm.a.32869

Younger, E. M., & Chapman, M. W. (1989). Morbidity at bone graft donor sites. Journal of Orthopaedic Trauma, 3(3), 192–195.

Downloads

Published

2016-05-04

Issue

Section

Research Articles