Evaluation of pluripotency gene in Thai human dental pulp stem cells
Keywords:
Pluripotency markers, Dental pulp stem cells, Thai, Primary teeth, Permanent teethAbstract
The introduction of stem cells in regenerative medicine have given us valuable opportunities to repair the disfunctional tissues and organs of human. The more variety of cell types stem cells can give rise to the more diseases and disability we can overcome. ‘Pluripotency’ refers to the ability of stem cells to differentiate into all three germ layers. The aim of this study was to evaluate the expression of pluripotency markers in Thai human dental pulp stem cells. Stem cells was isolated and cultured from dental pulp tissue of 3 permanent teeth (DPSC 1-3) and 3 human exfoliated deciduous teeth (SHED1-3). The total RNA was extracted from the dental pulp stem cells in passage 3-5. The cDNA of DPSCs and SHEDs was measured the gene expression level of OCT-4, NANOG, SOX-2, and HNF-3b by RT-qPCR. The statistical difference was determined by Mann-Whitney U test (P-value<0.05). The result showed variation in level of pluripotency gene expression among both DPSC 1-3 and SHED 1-3. Comparatively, the expression of OCT-4, NANOG, SOX-2 gene appeared to demonstrate higher trend in SHEDs. Whereas, higher trend of HNF 3b gene expression was detected in DPSCs. The genetic investigation of stem cell can reveal many useful data for the future of stem cell research and regenerative medicine. This study was the first to provide comparative pluripotency markers information between SHED and DPSC of selected Thai patients.
References
Arthur, A., Rychkov, G., Shi, S., Koblar, S.A., & Gronthos, S. (2008). Adult human dental pulp stem cells differentiate toward functionally active neurons under appropriate environmental cues. Stem Cells, 26, 1787–1795.
Atari, M., Barajas, M., Hernandez-Alfaro, F., Gil, C., Fabregat, M., & Ferres Padro, E. (2011). Isolation of pluripotent stem cells from human third molar dental pulp. Histology and histopathology, 26(8), 1057-1070.
Calloni, R., Cordero, E. A. A., Hendriques, J. A. P., & Bonato, D. (2013). Reviewing and updating the major molecular markers from stem cells. Stem cells and development, 22(9), 1455-1475.
Dufort, D., Schwartz, L., Harpal, K., & Rossant, J. (1998). The transcription factor HNF3beta is required in visceral endoderm for normal primitive streak morphogenesis. Development, 125(16), 3015-3025. Retrieved from http://dev.biologists.org/content/125/16/3015.long
Govindasamy, V., Abdullah, A. N., Ronald, V. S., Musa, S., Ab. Aziz, Z. A. C., Zain, R. B., … Abu Kasim, N. H. (2010). Inherent differential propensity of dental pulp stem cells derived from human deciduous and permanent teeth. Journal of Endodontics, 36(9), 1504-1515.
Govindasamy, V., Ronald, V. S., Abdullah, A. N., Ganesan Nathan, K. R., Aziz, Z. A. C. Ab., Abdullah M., … Bhonde, R.R. (2011). Differentiation of dental pulp stem cells into islet-like aggregates. Journal of Dental Research, 90(5), 646-652.
Gronthos, S., Mankani, M., Brahim, J., Robey, P. G., & Shi, S. (2000). Proceedings of the National Academy of Sciences of the United States of America. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo, 97(25), 13625-13630.
Guan, Z., Shi, S., & Kamolmatyakul S. (2011). Proliferation and mineralization ability of dental pulp cells derived from primary and permanent teeth. Songklanakarin J Sci Technol, 33(2), 129-134.
Hallonet, M., Kaestner, K. H., Martin-Parras, L., Sasaki, H., Betz, U. A. K., & Ang, S-L. (2002). Maintenance of the specification of the anterior definitve endoderm and forebrain depends on the axial mesendoderm: A study using HNF-3b conditional mutants. Development Biology, 243, 20-33.
Howard, L., Mackenzie. R. M., Pchelintsev. N. A., McBeyan, T., McClure. J. D., McBride. M. W., … Baker, A. H. (2013). Profiling of transcriptional and epigenetic changes during directed endothelial differentiation of human embryonic stem cells identifies FOXA2 as a marker of early mesoderm commitment. Stem cell research & Therapy, 4(36), 1-7.
Huang, C. E., Hu, F. W., Yu, C. H., Tsai, L. L., Lee, T. H, Chou, M. Y., & Yu, C. C. (2014). Concurrent expression of Oct4 and Nanog maintains mesenchymal stem-like property of human dental pulp cells. International Journal of Molecular Sciences, 15, 18623-18639.
Iohara, K., Zheng, L., Ito, M., Tomokiyo, A., Matsushita, K., & Nakashima, M. (2006). Side population cells isolated from porcine for dentinogenesis chondrongenesis, adipogenesis, and neurogenesis. Stem Cells, 24, 2493-2503.
Ishkitiev, N., Yaegaki, K., Imai, T., Tanaka, T., Nakahara, T., Ishikawa, H., … Haapasalo, M. (2012). High-purity hepatic lineage differentiated from dental pulp stem cells in serum-free medium. J. Endod, 38, 475–480.
Kellner, M., Steindorff. M. M., Strempel. J. F., Winkel, A., Kuhnel. M. P., & Stiesch, M. (2014). Differences of isolated dental stem cells dependent on donor age and consequences for autologous tooth replacement. Journal of Oral Biology, 59, 559-567.
Kim, H., Kim, Y. Y., Ku, S. Y., Kim, S. H., Choi, Y. M., & Moon, S. Y. (2013). The effect of estrogen compounds on human embryoid bodies. Reproductive Sciences, 20(6), 661-669.
Kitagawa, M., Ueda, H., Iizuka, S., Sakamoto, K., Oka, H., Kudo, Y., … Takata, T. (2007) Immortalization and characterization of human dental pulp cells with odontoblastic differentiation. Archives of Oral Biology, 52, 727-731.
Lanza, R., & Atala, A. (2014). Essentials of stem cell biology (3rd ed.). San Diego, CA: Elsevier.
Lee, Y. M., Shin, S. Y., Jue, S. S., Kwon, I. K., Cho, E. H., Cho, E. S., … Kim, E. C. (2014). The role of PIN1 on odontogenic and adipogenic differentiation in human dental pulp stem cells. Stem Cells Development, 23, 618–630.
Liu, P., Cai, J., Dong, D., Chen, Y., Liu, X., Wang, Y., & Zhou, Y. (2015). Effects of SOX2 on Proliferation, Migration and Adhesion of Human Dental Pulp Stem Cells. PLOS ONE, 10(10), 1-17.
Miura, M., Gronthos, S., Zhao, M., Lu, B., Fisher, L. W., Robey, P. G., & Shi, S. (2003). Proceedings of the National Academy of Sciences of the United States of America. SHED: stem cells from human exfoliated deciduous teeth, 100(10), 5807-5812.
Miang-Lon Ng, P., & Lufkin, T. (2011). Embryonic stem cells: protein interaction networks. Biomoecular Concepts, 2(1-2), 13-25.
Nakatsuka, R., Nozaki, T., Uemura, Y., Matsuoka, Y., Sasaki, Y., Shinohara, M., … Sonoda, Y. (2010). 5-Aza-2'-deoxycytidine treatment induces skeletal myogenic differentiation of mouse dental pulp stem cells. Arch. Oral Biol, 55, 350–357.
Niwa, H. (2007). How is pluripotency determined and maintained? Development, 134, 635-646.
Pesce, M., Anasteasiadis, K., & Scholer, H. R. (1999). Ovt-4 lessons of totipotency from embryonic stem cells. Cell tissue organs, 165, 144-152.
Ralston, A., & Rossant, J. (2010). The genetics of induced pluripotency. Reproduction, 139, 35-44.
Rossant, J. (2008). Stem cells and early lineage development. Cell, 132, 527-531.
Sawangmake, C., Nowwarote, N., Pavasant, P., Chansiripornchai, P., & Osathanon, T. (2014). A feasibility study of an in vitro differentiation potential toward insulin-producing cells by dental tissue-derived mesenchymal stem cells. Biochemical and Biophysical Research Communications, 452, 581-587.
Srisawasdi, S., & Pasavant, P. (2007) Different roles of dexamethasone on transforming growth factor-beta1-induced fibronectin and nerve growth factor expression in dental pulp cells. Journal of Endodontics, 33, 1057-1060.
Yu, J., He, H., Tang, C., Zhang, G., Li, Y., Wang, R., … Jin, Y. (2010). Differentiation potential of STRO-1+ dental pulp stem cells changes during cell passaging. BMC Cell Biol, 11, 32. https://doi.org/10.1186/1471-2121-11-32.
Zhu, Y., Shang, L., Chen, X., Kong, X., Liu, N., Bai, Y., … Jin, Y.(2012). Deciduous dental pulp stem cells are involved in osteoclastogenesis during physiologic root resorption. Journal of Cellular Physiology, 228, 207-215.
Downloads
Published
Issue
Section
License
Copyright (c) 2016 Naresuan University Journal: Science and Technology
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.