Dynamic simulation of carbon stocks in tropical lowland savanna in East Nusa Tenggara, Indonesia

Authors

  • Aah Ahmad Almulqu Graduate School of  Natural Resources and Environment, Naresuan University, Muang, Phitsanulok 65000, Thailand; Study Program in Forest Resources Management, Kupang State of Agricultural Polytechnic (Politani Kupang) East Nusa Tenggara, Indonesia
  • Jaruntorn Boonyanuphap Faculty of Agriculture Natural Resources and Environment, Naresuan University, Muang, Phitsanulok 65000, Thailand

Keywords:

carbon pool, tropical lowland savanna, carbon storage, carbon accounting simulation software (CASS), carbon dynamics

Abstract

     Tropical forest can stabilize CO2 concentration in atmosphere by absorbing CO2 through photosynthesis process and store it in forest biomassCarbon stock information in forest biomass is required to facilitate carbon sink programmeThis study aims to calculate carbon pools and carbon sequestration, and to simulate the dynamics of carbon stocks in the tropical lowland savanna by using the Carbon Accounting Simulation Software (CASS) programmeThe study was located at Taman Wisata Alam Camplong (Camplong Nature Recreation Park), Camplong village, Kupang Regency, East Nusa Tenggara Province, Indonesia. Plots size of 20 m x 100 m were established in six study sites. The scenario for this research was divided into 3 scenarios i.e. Scenario 1 (Natural and traditional forest management) was applied for virgin dry forest and traditional agroforestry sites, Scenario 2 (Timber-based plantation forest management), and Scenario 3 (Non timber-based plantation forest management). The results show that the carbon concentration of Traditional agroforestry system (or Mamar forest) were up to 52% higher than virgin dry forest. Carbon stock of living vegetation and soil were increased with a decreasing of harvesting rotation and reached the highest level in Mamar forest (273.558 gC/m2/year and 344.042 gC/m2/year). Timber-based plantations with mixed species had the next higher value of carbon stock, and the non-timber-based plantation forest was the third. In the study sites, managing the dry forest for timber is compatible with maximizing carbon storage if appropriate harvesting practices are used.

References

Baker, I. T., Denning, A. S., Prihodko, L., Schaefer, K., Berry, J. A., Collatz, G. J., & Leonard, O. (2007). Global net ecosystem exchange (NEE) of CO2. Tennessee: Oak Ridge National Laboratory.

BKSDA [Balai Konservasi Sumber Daya Alam VII] Kupang. (1996). Rencana Pengelolaan Taman Wisata Alam Camplong. Peroiode 1 April 1996 s/d 31 Maret 2021. Kabupaten Kupang. Propinsi Nusa Tenggara Timur. Kupang, Indonesia: Departemen Kehutanan Kantor Wilayah Propinsi NTT.

Balitklimat. (2004). Atlas Sumberdaya Iklim/Agroklimat untuk Pertanian. Indonesia: Balai Penelitian Agroklimat dan Hidrologi, Bogor.

Boonyanuphap, J., Sakurai, K., & Tanaka, S. (2007). Soil nutrient status under upland farming practice in the Lower Northern Thailand. Tropics, 16(3), 215-231.

Brown, S. (1997). Estimating biomass and biomass change of tropical forest: A Primer (Vol. 134). Rome, Italy: Food & Agriculture Org.

Chapman, C. A., & Chapman, L. J. (1990). Density and growth rate of some tropical dry forest trees: comparisons between successional forest types. Bulletin of the Torrey Botanical Club, 117(3), 226-231.

Dossa, E. L., Fernandes, E. C. M., Reid, W. S., & Ezui, K. (2008). Above-and belowground biomass, nutrient and carbon stocks contrasting an open-grown and a shaded coffee plantation. Agroforestry Systems, 72(2), 103-115.

Eaton, J. M., & Lawrence, D. (2009). Loss of carbon sequestration potential after several decades of shifting cultivation in the Southern Yucatán. Forest Ecology and Management, 258(6), 949-958.

Feiziene, D., Feiza, V., Kadziene, G., & Slepetiene, A. (2007). Soil multifunctional properties under different management of Endocalcari-Epihypogleyic Cambisol in Lithuania: Proceeding of the 16th CIEC International Symposium, 16–19 September 2007 (pp. 186 – 192). Gent, Belgium: The Centre for Industry Education Collaboration (CIEC).

Gibbs, H. K., Brown, S., Niles, J. O., & Foley, J. A. (2007). Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environmental Research Letters, 2(4), 045023.

Hairiah, D. K., & Berlian, R. S. (2006). Layanan lingkungan agroforestri berbasis kopi: cadangan karbon dalam biomasa pohon dan bahan organik tanah (studi kasus dari Sumberjaya, Lampung Barat). Agrivita, 3, 298-309.

Haynes, R. J. (2005). Labile organic matter fractions as central components of the quality of agricultural soils: an overview. Advances in agronomy, 85, 221-268.

Houghton, R. A., & Goodale, C. L. (2004). Ecosystems and Land Use Change. NW: American Geophysical Union.

Houghton, R. A., House, J. I., Pongratz, J., Van der Werf, G. R., DeFries, R. S., Hansen, M. C., & Ramankutty, N. (2012). Carbon emissions from land use and land-cover change. Biogeosciences, 9(12), 5125-5142.

Jiang, H., Apps, M. J., Peng, C., Zhang, Y., & Liu, J. (2002). Modelling the influence of harvesting on Chinese boreal forest carbon dynamics. Forest Ecology and Management, 169(1), 65-82.

Jose, S., & Bardhan, S. (2012). Agroforestry for biomass production and carbon sequestration: an overview. Agroforestry Systems, 86(2), 105-111.

Korstian, C. F. (1937). Perpetuation of spruce on cutover and burned lands in the higher southern Appalachian Mountains. Ecolgical Mnographs, 7:125-167.

Lal, R., & Bruce, J. P. (1999). The potential of world cropland soils to sequester C and mitigate the greenhouse effect. Environmental Science & Policy, 2(2), 177-185.

Lal, R. (2004). Soil carbon sequestration impacts on global climate change and food security. Science,

(5677), 1623-1627.

Martin, D., Lal, T., Sachdev, C. B., & Sharma, J. P. (2010). Soil organic carbon storage changes with climate change, landform and land use conditions in Garhwal hills of the Indian Himalayan mountains. Agriculture, ecosystems & environment, 138(1), 64-73.

McPherson, G. R. (1997). Ecology and management of North American Savannas. University of Arizona Press, Tucson.

Moore, P. T., DeRose, R. J., Long, J. N., & van Miegroet, H. (2012). Using silviculture to influence carbon sequestration in southern Appalachian spruce-fir forests. Forests, 3(2), 300-316.

Moore, T. R., Bubier, J. L., & Bledzki, L. (2007). Litter decomposition in temperate peatland ecosystems: The effect of substrate and site. Ecosystems, 10, 949-963.

Moore, D. J. R., Gonzalez-Meler, M. A. Taneva, L. Pippen, J. S., Kim, & H-S, DeLucia, E. H. (2008). The effect of carbon dioxide enrichment oon apparent stem respiration from Pinus taeda L. is confounded by high levels of soil carbon dioxide. Oecologia, 158, 1-10.

Moran, M. M., McFarland, K., Melendez, R. I., Kalivas, P. W., & Seamans, J. K. (2005). Cystine/glutamate exchange regulates metabotropic glutamate receptor presynaptic inhibition of excitatory transmission and vulnerability to cocaine seeking. Journal of Neuroscience, 25(27), 6389-6393.

Njurumana, G. N., Hidayatullah, M., & Butarbutar, T. (2008). Kondisi Tanah pada Sistem Kaliwu dan Mamar di Timor dan Sumba. Info Hutan, 5(1), 45-51.

Pinard, M. A., & Putz, F. E. (1996). Retaining forest biomass by reducing logging damage. Biotropica, 28(3), 278-295.

Roxburgh, S. (2004). The CASS terrestrial carbon cycle model v. 1.2. User guide and tutorial exercises. CRC for Greenhouse Accounting, Australia.

Schimel, J. (2001). Biogeochemical models: Implicit versus explicit microbiology. Global biogeochemical cycles in the climate system, 177–183.

Schulze, E. D., & Heimann, M. (1998). Carbon and water exchange of terrestrial systems. Asian change in the context of global change, 3, 145-161.

Schulze, M. D., Seavy, N. E., & Whitacre, D. F. (2000). A Comparison of the Phyllostomid Bat Assemblages in Undisturbed Neotropical Forest and in Forest Fragments of a Slash-and-Burn Farming Mosaic in Petén, Guatemala 1. Biotropica, 32(1), 174-184.

Skutsch, M. M., & Ba, L. (2010). Crediting carbon in dry forests: The potential for community forest management in West Africa. Forest Policy and Economics, 12(4), 264-270.

Soewarsono. (1990). Specific gravity of Indonesian woods and its significance for practical use. Bogor, Indonesia: Departement of Forestry.

Soto-Pinto, L., Anzueto, M., Mendoza, J., Ferrer, G. J., & de Jong, B. (2010). Carbon sequestration through agroforestry in indigenous communities of Chiapas, Mexico. Agroforestry Systems, 78(1), 39-51.

Stephenson, R. E. (1941). Humus for Oregon soils. Station circular 143. Oregon State System of Higher Education. Agricultural Experiment Station. Oregon State College. Corvallis.

Vashum, K. T., & Jayakumar, S. (2012). Methods to estimate above-ground biomass and carbon stock in natural forests-a review. J. Ecosyst. Ecogr, 2(4), 1-7.

Williams, C. A., Collatz, G. J., Masek, J., & Goward, S. N. (2012). Carbon consequences of forest disturbance and recovery across the conterminous United States. Global Biogeochemical Cycles, 26(1),1-13.

Wilts, A. R., Reicosky, D. C., Allmaras, R. R., & Clapp, C. E. (2004). Long-term corn residue effects. Soil Science Society of America Journal, 68(4), 1342-1351.

Downloads

Published

2017-09-15

Issue

Section

Research Articles