Preparation and Characterization of Bimetallic Cu-Ni and/or Ni-Cu core-shell Nanoparticles with High Photocatalytic Activity
DOI:
https://doi.org/10.14456/nujst.2021.16Keywords:
Cu-Ni and/or Ni-Cu core-shell nanoparticles, Ni nanoparticles, bimetallic nanoparticles, aqueous reduction process, photocatalytic activityAbstract
One-pot synthesis of bimetallic Cu-Ni and/or Ni-Cu core-shell nanoparticles have been synthesized by aqueous reduction process, which was very simple, convenient, and prepared under ambient condition. The core-shell system of Cu and Ni could be formed by injecting copper nitrate into an aqueous mixed solution that contained sodium citrate, nickel sulfate, and sodium borohydride. In addition, the injecting time of copper nitrate has a huge effect to obtained either Cu-Ni or Ni-Cu core-shell products with various in size of core and shell structures. Hence, in this report, we explored the morphology and structural information of Cu-Ni and/or Ni-Cu core-shell nanoparticles with varied injecting time of copper nitrate such as 1 min, 5 min, and 10 min, respectively. The effect of the copper nitrate injecting time on the nanoparticles size and types of core and shell also investigated. The bimetallic products were characterized by X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM), and Energy Dispersive X-ray Spectrometer (EDS) methods. Beside, we provided information of photocatalytic activity under UV light illumination of the bimetallic nanoparticles. Compared with Ni monometallic nanoparticle, the bimetallic products enhanced the photocatalytic activity.
References
Ahmed, J., Ramanujachary, K. V., & Lofland, S. E. (2008). Bimetallic Cu-Ni nanoparticles of varying composition (CuNi3, CuNi, Cu3Ni). Colloids and Surfaces A, 331, 206–212.
Albonetti, S., Bonelli, R., Mengou, J. E., Femoni, C., Tiozzo, C., Zacchini, S., & Trifirò, F. (2008). Gold/iron carbonyl clusters as precursors for TiO2 supported catalysts. Catalysis Today, 137, 483-488.
Akbulut, H., & Inal, O. T. (1998). Plasma-assisted deposition of metal and metal oxide coatings. Journal of Materials Science, 33, 1189–1199.
Barakat, M., Al-Hutailah, R. l., Hashim, M. H., Qayyum, E., & Kuhn, J. N. (2013). Titania-supported silver-based bimetallic nanoparticles as photocatalysts. Environmental Science and Pollution Research, 20, 3751-3759.
Bing, Y., Liu, H., Zhang, L., Ghosh, D., & Zhang, J. (2010). Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction. Chemical Society Reviews, 39, 2184-2202.
Carroll, K. J, Hudgins, D. M., Spurgeon, S., Kemner, K. M., Mishra, B., Boyanov, M. I., Carpenter, E. E. (2010). One-pot aqueous synthesis of Fe and Ag core/shell nanoparticles. Chemistry of Materials, 22, 6291–6296.
Deng, L., Wang, S., Liu, D., Zhu, B., Huang, W., Wu, S., & Zhang, S. (2009). Synthesis, characterization of Fe-doped TiO2 nanotubes with high photocatalytic activity. Catalysis Letters, 129, 513–518.
Fowkes, F. M., Anderson, F. W., & Berger, J. E. (1970). Bimetallic coalescers: electrophoretic coalescence of emulsions in beds of mixed-metal granules. Environmental Science and Technology, 4, 510-514.
Fu, C. Y., Kho, K. W., Dinish, U. S., Koh, Z. Y., & Malini, O. (2012). Enhancement in SERS intensity with hierarchical nanostructures by bimetallic deposition approach. Journal of Raman Spectroscopy, 43, 977-985.
Gilroy, K. D., Ruditskiy, A., Peng, H.-C., Qin, D., & Xia, Y. (2016). Bimetallic nanocrystals: syntheses, properties, and applications. Chemical Reviews, 116, 10414-10472.
Hashemizadeh, S. A., & Biglari, M. (2018). Cu:Ni bimetallic nanoparticles: facile synthesis, characterization and its application in photodegradation of organic dyes. Journal of Materials Science: Materials in Electronics, 29, 13025–13031.
Huber, G. W., Shabaker, J. W., & Dumesic, J. A. (2003). Raney Ni-Sn catalyst for H2 production from biomass-derived hydrocarbons. Science, 300, 2075-2077.
Ibrahim, R. K., Hayyan, M., AlSaadi, M. A., Hayyan, A., & Ibrahim, S. (2016). Environmental application of nanotechnology: air, soil, and water. Environmental Science and Pollution Research, 23, 13754–13788.
Lim, B., Jiang, M., Camargo, P. H. C., Cho, E. C., Tao, J., Lu, X., & Xia, Y. (2009). Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science, 324, 1302-1305.
Liu, Z., Jackson, G. S., & Eichhorn, B. W. (2011). Tuning the CO-tolerance of Pt-Fe bimetallic nanoparticle electrocatalysts through architectural control. Energy and Environmental Science, 4, 1900.
Mohamed Saeed, G. H., Radiman, S., Gasaymeh, S. S., Lim, H. N., & Huang, N. M. (2010). Mild hydrothermal synthesis of Ni–Cu Nanoparticles. Journal of Nanomaterials, 184137, 1-5.
Murray, R. W. (2008). Nanoelectrochemistry: metal nanoparticles, nanoelectrodes, and nanopores. Chemical Reviews, 108, 2688-2720.
Song, H. M., Kim, W. S., Lee, Y. B., Hong, J. H., Lee, H. G., & Hur, N. H. (2009). Chemically ordered FePt3 nanoparticles synthesized by a bimetallic precursor and their magnetic transitions. Journal of Materials Chemistry, 19, 3677-3681.
Srinoi, P., Chen, Y. T., Vittur, V., Marquez, M. D., & Lee, T. R. (2018). Bimetallic nanoparticles: enhanced magnetic and optical properties for emerging biological applications. Applied Science, 8, 1-32.
Sun, S., Murray, C. B., Weller, D., Folks, L., & Moser, A. (2000). Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science, 287, 1989-1992.
Tee, Y.-H., Bachas, L., & Bhattacharyya, D. (2009). Degradation of trichloroethylene by Iron-based bimetallic nanoparticles. Journal of Physical Chemistry C, 113, 9454-9464.
Yamauchi, T., Tsukahara, Y., Sakata, T., Mori, H., Yanagida, T., Kawai, T., & Wada, Y. (2010). Magnetic Cu–Ni (core–shell) nanoparticles in a one-pot reaction under microwave irradiation. Nanoscale, 2, 515-523.
Yan, M., Zhang, M., Ge, S., Yu, J., Li, M., Huang, J., & Liu, S. (2012). Ultrasensitive electrochemiluminescence detection of DNA based on nanoporous gold electrode and PdCu@carbon nanocrystal composites as labels. Analyst, 137, 3314-3320.
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Naresuan University Journal: Science and Technology
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.