DC and AC Circuit Parameters of Hybrid InAs/GaAs and GaSb/GaAs Quantum-Dot Solar Cells
DOI:
https://doi.org/10.14456/nujst.2021.9Keywords:
Hybrid quantum-dot solar cell, DC characteristic, AC characteristic, Equivalent circuit modelAbstract
We investigate DC and AC circuit parameters of hybrid quantum-dot (QD) solar cells consisted of self-assembled InAs/GaAs and GaSb/GaAs QDs. The hybrid QD solar cell samples are fabricated by stacking of one pair and three pairs of InAs/GaAs and GaSb/GaAs QD layers in molecular beam epitaxy. A measurement circuit has been used for both DC and AC parameter extraction. Numerical values of the parameters are extracted from the fittings of experimentally measured current-voltage characteristics and frequency responses of the samples under controlled bias condition. The fitting functions are derived from the considered equivalent circuit models. Extracted series and shunt resistance values can be related to the sample structure. For the AC characteristics, a low shunt resistance and a high capacitance of three-pair hybrid QD solar cell are observed. We attribute the latter to the high number density of buried QDs in the sample. These findings shed light on the relationship between electrical characteristic of QD devices and their structure.
References
Bimberg, D. (2008). Semiconductor Nanostructures. Berlin, Germany: Springer.
Chevuntulak, C., Rakpaises, T., Sridumrongsak, N., Thainoi, S., Kiravittaya, S., Nuntawong, N., … Panyakeow, S. (2019). Molecular beam epitaxial growth of interdigitated quantum dots for heterojunction solar cells. Journal of Crystal Growth, 512, 159–163. https://doi.org/10.1016/j.jcrysgro.2019.02.031
Chin, V. J., Salam, Z., & Ishaque, K. (2015). Cell modelling and model parameters estimation techniques for photovoltaic simulator application: A review. Applied Energy, 154, 500–519. http://dx.doi.org/10.1016/j.apenergy.2015.05.035
Cotfas, D. T., Cotfas, P. A., Kaplanis, S. (2016). Methods and techniques to determine the dynamic parameters of solar cells: Review. Renewable and Sustainable Energy Reviews, 61, 213–221. https://doi.org/10.1016/j.rser.2016.03.051
Deshmukh, M. P., Anil Kumar, R., Nagaraju, J. (2004). Measurement of solar cell ac parameters using the time domain technique. Review of Scientific Instruments, 75(8), 2732–2735. http://dx.doi.org/10.1063/1.1777380
González-Pedro, V., Xu, X., Mora-Seró, I., & Bisquert, J. (2010). Modeling high-efficiency quantum dot sensitized solar cells. ACS Nano, 4(10), 5783–5790. https://pubs.acs.org/doi/abs/10.1021/nn101534y#
Han, I. S., Kim, S. H., Kim, J. S., Noh, S. K., Lee, S. J., Kim, H., … Leem, J. Y. (2018). Electrical and optical characterizations of InAs/GaAs quantum dot solar cells, Applied Physics A, 124(245), 1-9. https://doi.org/10.1007/s00339-018-1661-y
Jain, A., Kapoor, A. (2004). Exact analytical solutions of the parameters of real solar cells using Lambert W-function. Solar Energy Materials & Solar Cells, 81, 269–277. https://doi.org/10.1016/j.solmat.2003.11.018
Ji, H. M., Liang, B., Simmonds, P. J., Juang, B. C., Yang, T., Young, R. J., Huffaker, D. L. (2015). Hybrid type-I InAs/GaAs and type-II GaSb/GaAs quantum dot structure with enhanced photoluminescence. Applied Physics Letters, 106(103104), 1-5. https://doi.org/10.1063/1.4914895
Lin, W. H., Tseng, C. C., Chao, K. P., Mai, S. C., Kung, S. Y., Wu, S. Y., … Wu, M. C. (2011). High-temperature operation GaSb/GaAs quantum-dot infrared photodetectors. IEEE Photonics Technology Letters, 23(2), 106-108. https://doi.org/10.1109/LPT.2010.2091949
Luque, A., Martí, A. (1997). Increasing the efficiency of Ideal solar cells by photon induced transitions at intermediate levels. Physical Review Letters, 78(26), 5014-5017. http://doi.org/10.1103/PhysRevLett.78.5014
Mandal, H., Nagaraju, J. (2007). GaAs/Ge and silicon solar cell capacitance measurement using triangular wave method. Solar Energy Materials Solar Cells, 91(8), 696–700. http://dx.doi.org/10.1016/j.solmat.2006.12.008
Martí, A., López, N., Antolín, E., Cánovas, E., Stanley, C., Farmer, C., … Luque, A. (2006). Novel semiconductor solar cell structures: The quantum dot intermediate band solar cell. Thin Solid Films, 511-512, 638-644. http://dx.doi:10.1016/j.tsf.2005.12.122
Okada, Y., Ekins-Daukes, N. J., Kita, T., Tamaki, R., Yoshida, M., Pusch, A., … Guillemoles, J. F. (2015). Intermediate band solar cells: Recent progress and future directions. Applied Physics Reviews, 2(2), 1-48. https://doi.org/10.1063/1.4916561
Pierret, R. F. (1996). Semiconductor Device Fundamentals (2nd Ed.). Boston, United States: Addison-Wesley.
Prasatsap, U., Kiravittaya, S., Rakpaises, T., Sridumrongsak, N., Tandaechanurat, A., Yordsri, V., … Panyakeow, S. (2020). Equivalent circuit parameters of hybrid quantum-dot solar cells. Materials Today: Proceedings, 23, 767–776. https://doi.org/10.1016/j.matpr.2019.12.272
Proctor, C. M., Nguyen, T. Q. (2015). Effect of leakage current and shunt resistance on the light intensity dependence of organic solar cells. Applied Physics Letters, 106(8), 1-4. https://doi.org/10.1063/1.4913589
Rakpaises, T., Sridumrongsak, N., Chevintulak, C., Thainoi, S., Kiravittaya, S., Nuntawong, N., … Tandaechanurat, A. (2018, June). Demonstration of photovoltaic effects in hybrid type-I InAs/GaAs quantum dots and type-II GaSb/GaAs quantum dots. Retrieved from https://ieeexplore.ieee.org/document/8548160
Rhouma, M. B. H., Gastli, A., Brahim, L. B., Touati, F., & Benammar, M. (2017). A simple method for extracting the parameters of the PV cell single-diode model. Renewable Energy, 113, 885-894. https://doi.org/10.1016/j.renene.2017.06.064
Sriphan, S., Kiravittaya, S., Thainoi, S., & Panyakeow, S. (2015). Effects of temperature on I-V characteristics of InAs/GaAs quantum-dot solar cells. Advanced Materials Research, 1103, 129-135. https://doi.org/10.4028/www.scientific.net/amr.1103.129
Suresh, M. S. (1996). Measurement of solar cell parameters using impedance spectroscopy. Solar Energy Materials & Solar Cells, 43, 21-28. https://doi.org/10.1016/0927-0248(95)00153-0
The MathWorks. (2006). lsqcurvefit. Retrieved from https://www.mathworks.com/help/optim/ug/lsqcurvefit.html
Wang, Z. M. (2012). Quantum Dot Devices. Berlin, Germany: Springer.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Naresuan University Journal: Science and Technology
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.