Shielding of uncharged and charged radiation of PbO–B2O3–SiO2–Na2O glass system

Authors

  • Kittisak Sriwongsa Lecturers responsible for Bachelor of Education Program in Physics, Faculty of Education, Silpakorn University, Nakhon Pathom, 73000, Thailand, The demonstration school of Silpakorn University, Nakhon Pathom, 73000, Thailand.
  • Punsak Glumglomchit Huahin Vitthayalai School, Hua–Hin, Prachuap Khiri Khan, 77110, Thailand
  • Bussayamas Sualuang Huahin Vitthayalai School, Hua–Hin, Prachuap Khiri Khan, 77110, Thailand
  • Punnawich Arunoros Huahin Vitthayalai School, Hua–Hin, Prachuap Khiri Khan, 77110, Thailand
  • Maysinee Pansuay Huahin Vitthayalai School, Hua–Hin, Prachuap Khiri Khan, 77110, Thailand
  • Sunantasak Ravangvong Division of Science and Technology, Faculty of Science and Technology, Phetchaburi Rajabhat University, Phetchaburi, 76000, Thailand
  • Chumphon Khobkham Faculty of Engineering, Thonburi University, Bangkok, 10160 Thailand

DOI:

https://doi.org/10.14456/nujst.2022.9

Keywords:

Uncharged radiation, Charged radiation, Radiation shielding

Abstract

        The aim of this research to study uncharged and charged radiation attenuation properties of xPbO–20SiO2–10Na2O–(70–x)B2O3 glass system where x = 20, 30, 40, 50 and 60 mol %. Uncharged radiation has been simulated mass attenuation coefficient (µm), effective atomic number (Zeff), effective electron density (Nel), half value layer (HVL), mean free path (MFP) and build–up factors (BFs) while parameters of charged radiations as alpha (He2+) and proton (H+) particles have been calculated attenuation properties. The µm, Zeff, Nel, HVL and MFP values were derived from WinXCom program at energy ranging 1–108 keV. BFs values were determined using geometrical progression (G–P) fitting method for energy ranging 0.015–15 MeV at deep penetration 1–40 mfp (mean free path). While the alpha (He2+) and proton (H+) particles attenuation properties were simulated from the SRIM software at energy ranging 0.01–10 MeV. The results reported that 60PbO–20SiO2–10Na2O–10B2O3 glass sample was excellent glass in terms of shielding for uncharged and charged radiation. The results of this research can be useful for variation radiation shielding purpose.

References

Agar, O., Kavaz, E., Altunsoy, E. E., Kilicoglu, O., Tekin, H. O., Sayyed, M. I., … Tarhan, N. (2019). Er2O3 effects on photon and neutron shielding properties of TeO2–Li2O–ZnO–Nb2O5 glass system. Results in physics, 13, 102277.

Akasaka, Y., Yasui, I., & Nanba, T. (1993). Network structure of RO.2B2O3 glasses. Physics and chemistry of glasses, 34(6), 232–237.

Al-Buriahi, M. S., & Rammah, Y. S. (2019). Electronic polarizability, dielectric, and gamma-ray shielding properties of some tellurite-based glasses. Applied physics A-materials science & processing, 125(678), 1–9.

Chakradhar, R. P. S., Murali, A., & Rao, J. L. (1998). Electron paramagnetic resonance and optical absorption studies of Cu2+ ions in alkali barium borate glasses. Journal of alloys and compounds, 265, 29–37.

Chanthima, N., Kaewkhao, J., Kedkaew, C., Chewpraditkul, W., Pokaipisit, A., & Limsuwan, P. (2011). Study on Interaction of Bi2O3, PbO and BaO in silicate glass system at 662 keV for development of gamma-rays shielding materials. Progress in nuclear science and technology, 1, 106–109.

Dupree, R., Ford, N., & Holland, D. (1987). An examination of the Si–29 environment in the PbO-SiO2 system by magic angle spinning nuclear magnetic resonance. Physics and chemistry of glasses, 28(2), 78–84.

Elazoumi, S. H., Sidek, H. A. A., Rammah, Y. S., El-Mallawany, R., Halimah, M. K., Matori, K., & Zaid, M. H. M. (2018). Effect of PbO on optical properties of tellurite glass. Results in physics, 8, 16–25.

El-Agawany, F. I., Kavaz, E., Perişanoğlu, U., Al-Buriahi, M. S., & Rammah, Y. S. (2019). Sm2O3 effects on mass stopping power/projected range and nuclear shielding characteristics of TeO2–ZnO glass systems. Applied physics A-materials science & processing, 125(838), 1–12.

El-Bashir, B. O., Sayyed, M. I., Zaid, M. H. M., & Matori, K. A. (2017). Comprehensive study on physical, elastic and shielding properties of ternary BaO–Bi2O3–P2O5 glasses as a potent radiation shielding material. Journal of non–crystalline solids, 468, 92–99.

El-Kameesy, S. U., El-Zaiat, S. Y., Youssef, G. M., Saudi, H. A., El-Fiki, S. A., & Abu-raia, W. A. (2019). Linear optical properties of xPbO–20SiO2–10Na2O–(70–x)B2O3 glass system. Sillicon, 11(18), 1505–1515.

El-Sharkawy, R. M., Shaaban, K. S., Elsaman, R., Allam, E. A., El-Taher, A., & Mahmoud, M. E. (2020). Investigation of mechanical and radiation shielding characteristics of novel glass systems with the composition xNiO–20ZnO–60B2O3–(20–x)CdO based on nanometal oxides. Journal of non–crystalline solids, 528, 119754.

Hubert, T., Harder, U., Mosel, G., & Witke, K. (1997). Borate glasses, crystals and melts. In: Wright, A. C., Feller, S. A., Hannon, A. C. (eds) 2nd International Conference Borate glasses, crystals and melts. Society of Glass Technology Sheffield, 156–163.

Intom, S., Kalkornsurapranee, E., Johns, J., Kaewjaeng, S., Kothan, S., Hongtong, W., … Kaewkhao, J. (2020). Mechanical and radiation shielding properties of flexible material based on natural rubber/ Bi2O3 composites. Radiation physics and chemistry, 172, 108772.

Issa, S. A. M., Rashad, M., Zakaly, H. M. H., Tekin, H. O., & Abouhaswa, A. S. (2020). Nb2O5–Li2O–Bi2O3–B2O3 novel glassy system: evaluation of optical, mechanical, and gamma shielding parameters. Journal of materials science: materials in electronics, 31(24), 1–18.

Issa, S. A. M., Tekin, H.O., Elsaman, R., Kilicoglu, O., Saddeek, Y. B., & Sayyed, M. I. (2019). Radiation shielding and mechanical properties of Al2O3–Na2O–B2O3–Bi2O3 glasses using MCNPX Monte Carlo code. Materials chemistry and physics, 223, 209–219.

Kaur, K., Singh, K. J., & Anand, V. (2015). Correlation of gamma ray shielding and structural properties of PbO–BaO–P2O5 glass system. Nuclear engineering and design, 285, 31–38.

Kavaz, E., Ekinci, N., Tekin, H. O., Sayyed, M. I., Aygün, B., & Perişanoğlu, U. (2019). Estimation of gamma radiation shielding qualification of newly developed glasses by using WinXCOM and MCNPX code. Progress in nuclear energy, 115, 12–20.

Kilicoglu, O., Altunsoy, E. E., Agar, O., Kamislioglu, M., Sayyed, M. I., Tekin, H. O., & Tarhan, N. (2019). Synergistic effect of La2O3 on mass stopping power (MSP)/projected range (PR) and nuclear radiation shielding abilities of silicate glasses. Results in physics, 4, 102424.

Leventhal, M., & Bray, P. J. (2012). Nuclear Magnetic Resonance Investigation of Compounds and Glasses in Systems PbO–B2O3 and PbO–SiO2. Physics and chemistry of glasses, 6, 113–125.

Mahmoud, M. E., El-Khatib, A. M., Halbas, A. M., & El-Sharkawy, R. M. (2020). Investigation of physical, mechanical and gamma-ray shielding properties using ceramic tiles incorporated with powdered lead oxide. Ceramics international, 46, 15686–15694.

Meera, B. N., & Ramakrishna, J. (1993). Raman spectral studies of borate glasses. Journal of non–crystalline solids, 159, 1–12.

Meera, B. N., Sood, A. K., Chandrabbas, N., & Ramakrishna, J. (1990). Raman study of lead borate glasses. Journal of non–crystalline solids, 126, 224–230.

Mhareb, M. H. A., Alajerami, Y. S. M., Dwaikat, N., Al-Buriahi, M. S., Alqahtani, M., Alshahri, F., … Sayyed, M. I. (2012). Investigation of photon, neutron and proton shielding features of H3BO3–ZnO–Na2O–BaO glass system. Nuclear engineering and technology, 53, 949–959.

Mydlar, M. F., Kreidl, N. J., Hendren, J. K., & Clayton, G. T. (1970). X-ray diffraction study of lead silicate glasses. Physics and chemistry of glasses, 11, 196–201.

Olarinoye, I. O., El-Agawany, F. I., El-Adawy, A., El-Sayed, Y., & Rammah, Y. S. (2020). Mechanical features alpha particles photon proton and neutron interaction parameters of TeO2–V2O3–MoO3 semiconductor glasses. Ceramics international, 46(14), 23134–23144.

Pisarska, J., (2009). Luminescence behaviour of Dy3+ ions in lead borate glasses. Optical materials, 31, 1784–1786.

Rabinovich, E. M. (1976). Lead in glasses. Journal of materials science, 11, 925–948.

Rammah, Y. S., Al-Buriahi, M. S., & Abouhaswa, A. S. (2020). B2O3–BaCO3–Li2O3 glass system doped with Co3O4: structure, optical, and radiation shielding properties. Physica B: physics of condensed matter, 576, 411717.

Rammah, Y. S., El-Agawany, F. I., Mahmoud, K. A., Novatski, A., & El-Mallawany, R. (2020). Role of ZnO on TeO2.Li2O.ZnO glasses for optical and nuclear radiation shielding applications utilizing MCNP5 simulations and WinXCOM program. Journal of non–crystalline solids, 544, 120162.

Rammah, Y. S., Kilic, G., El-Mallawany, R., Issever, U. G., & El-Agawany, F.I. (2020). Investigation of optical, physical, and gamma-ray shielding features of novel vanadyl boro-phosphate glasses. Journal of non–crystalline solids, 533, 119905.

Rammah, Y. S., Sayyed, M. I., Ali, A. A., Tekin, H. O., & El-Mallawany, R. (2018). Optical properties and gamma shielding features of bismuth borate glasses. Applied physics A-materials science & processing, 124(832), 1–9.

Rammah, Y. S., Tekin, H. O., Sriwunkum, C., Olarinoye, I., Alalawi, A., Al-Buriahi, M. S., … Tonguc, B. T. (2021). Investigations on borate glasses within SBC-Bx system for gamma-ray shielding applications. Nuclear engineering and technology, 53(1), 282–293.

Sayyed, M. I. (2016). Bismuth modified shielding properties of zinc boro-tellurite glasses. Journal of alloys and compounds, 688, 111–117.

Sayyed, M. I. (2016). Investigations of gamma ray and fast neutron shielding properties of tellurite glasses with different oxide compositions. Canadian journal of physics, 94(11), 1133–1137.

Sayyed, M. I., Kaky, K. M., Gaikwad, D. K., Agar, O., Gawai, U. P., & Baki, S. O. (2019). Physical, structural, optical and gamma radiation shielding properties of borate glasses containing heavy metals (Bi2O3/MoO3). Journal of non–crystalline solids, 507, 30–37.

Sayyed, M. I., Tekin, H. O., Kılıcoglu, O., Agar, O., & Zaid, M. H. M. (2018). Shielding features of concrete types containing sepiolite mineral: comprehensive study on experimental, XCOM and MCNPX results. Results in physics, 11, 40–45.

Singh, H., Sharma, J., & Singh, T. (2018). Extensive investigations of photon interaction properties for ZnxTe100–x alloys. Nuclear engineering and technology, 50, 1364–1371.

Singh, K., Singh, H., Sharma, V., Nathuram, R., Khanna, A., Kumar, R., … Sahota, H. S. (2002). Gamma-ray attenuation coefficients in bismuth borate glasses. Nuclear instruments and methods in physics research B, 194, 1–6.

Singh, N., Singh, K. J., Singh, K., & Singh, H. (2004). Comparative study of lead borate and bismuth lead borate glass systems as gamma-radiation shielding materials. Nuclear instruments and methods in physics research B, 225, 305–309.

Singh, N., Singh, K. J., Singh, K., & Singh, H. (2006). Gamma-ray attenuation studies of PbO–BaO–B2O3 glass system. Radiation measurements, 41, 84–88.

Witke, K., Harder, U., Willfahrt, M., Hubert, T., & Reich, P. (1996). Vibrational spectroscopic investigations of lead borate and lead aluminoborate glasses. Glass science and technology, 69, 143–153.

Downloads

Published

2021-05-28

Issue

Section

Research Articles