In Vitro Evaluation of Probiotic Potential of Novel Isolates of Lactobacillus from Native Pig Feces

Authors

  • Chiraprapha Tuyarum Microbiology Program, Department of Biology, Faculty of Science, Thaksin University, Phatthalung, Thailand, 93210
  • Benyapa Prakit Undergraduate Student, Microbiology Program, Department of Biology, Faculty of Science, Thaksin University, Phatthalung, Thailand, 93210
  • Rungravee Chaiyod Undergraduate Student, Microbiology Program, Department of Biology, Faculty of Science, Thaksin University, Phatthalung, Thailand, 93210
  • Thanchanok Suttibul Undergraduate Student, Microbiology Program, Department of Biology, Faculty of Science, Thaksin University, Phatthalung, Thailand, 93210
  • Monthon Lertworapreecha Microbiology Program, Department of Biology, Faculty of Science, Thaksin University, Phatthalung, Thailand, 93210

DOI:

https://doi.org/10.14456/nujst.2022.4

Keywords:

Probiotics Properties, Lactobacillus spp, Pig feces

Abstract

        The native pigs are a potential source of lactic acid bacteria (LAB) with probiotic properties since animal feed diversity plays a significant role in the intestinal tract's bacterial population. Usually, intestinal bacteria's activity promotes digestion, strengthens the immune system, and reduces deleterious microorganisms. These bacterial populations in the intestinal tract contain a probiotic group, of which the most qualified bacteria constitute LAB. This study proposes screening LAB and testing probiotics' properties from 25 feces of individual healthy native pigs. From the 139 isolates selected from feces samples, the antimicrobial activity inhibits pathogenic bacteria such as Enterohemorrhagic Escherichia coli (EHEC) isolated strain SC451-1, Enteropathogenic Escherichia coli (EPEC) isolated strain SC451-2, Staphylococcus aureus ATCC25923, Klebsiella pneumoniae ATCC700603, Pseudomonas aeruginosa ATCC27853, and Salmonella Typhimurium isolated strain SC2451-3, entirely tolerant at 1.0 % bile salt. Moreover, some of them could survive at a low pH of three and have a high hydrophobicity potential. This study, shown four isolates of the LAB high probiotic properties, and sequencing analysis indicated that four isolates were L. plantarum,
L salivarius
L. paracasei, and L. paraplantarum. These properties allow the LAB to be considered a hopeful probiotic candidate for a feed additive of pig.

References

Balasingham, K., Chinnamani, V., Radhakrishnan, L., & Balasuramanyam, D. (2017). Probiotic characterization of lactic acid bacteria isolated from swine intestine. Veterinary World, 10, 825-829. https://doi.org/10.14202/vetworld.2017.825-829

Bidewell, C. A., Williamson, S. M., Rogers, J., Tang, Y., Ellis, R. J., Petrovska, L., & AbuOun, M. (2018). Emergence of Klebsiella pneumoniae subspecies pneumoniae as a cause of septicaemia in pigs in England. PLoS One, 13(2), e0191958. https://doi.org/10.1371/journal.pone.0191958

Campana, R., van Hemert, S., & Baffone, W. (2017). Strain-specific probiotic properties of lactic acid bacteria and their interference with human intestinal pathogens invasion. Gut Pathogens, 9, 1-12. http://doi.org/10.1186/s13099-017-0162-4

Carlson, J., & Slavin, J. (2016). Health benefits of fibre, prebiotics and probiotics: a review of intestinal health and related health claims. Quality Assurance and Safety of Crops & Foods, 8, 539-553. https://doi.org/10.3920/Qas2015.0791

CLSI. (2020). Performance Standards for Antimicrobial Susceptibility Testing M100 (30th ed.). Wayne, PA: Clinical and Laboratory Standards Institute.

Collado, M. C., Meriluoto, J., & Salminen, S. (2008). Adhesion and aggregation properties of probiotic and pathogen strains. European Food Research and Technology, 226, 1065-1073. https://doi.org/10.1007/s00217-007-0632-x

Cotter, P. D., & Hill, C. (2003). Surviving the acid test: responses of gram-positive bacteria to low pH. Microbiology and Molecular Biology Reviews, 67(3), 429-453. https://doi.org/10.1128/mmbr.67.3.429-453.2003

Cueva, C., Moreno-Arribas, M. V., Martin-Alvarez, P. J., Bills, G., Vicente, M. F., Basilio, A., & Bartolome, B. (2010). Antimicrobial activity of phenolic acids against commensal, probiotic and pathogenic bacteria. Research in Microbiology, 161, 372-382. https://doi.org/10.1016/j.resmic.2010.04.006

de Wouters, T., Jans, C., Niederberger, T., Fischer, P., & Ruhs, P. A. (2015). Adhesion Potential of Intestinal Microbes Predicted by Physico-Chemical Characterization Methods. Plos One, 10(8), https://doi.org/ARTNe013643710.1371/journal.pone.0136437

Ehrmann, M. A., Kurzak, P., Bauer, J., & Vogel, R. F. (2002). Characterization of lactobacilli towards their use as probiotic adjuncts in poultry. Journal of Apply Microbiology, 92(5), 966-975. https://doi.org/10.1046/j.1365-2672.2002.01608.x

Feng, J. C., Wang, L. H., Zhou, L. X., Yang, X., & Zhao, X. (2016). Using In Vitro Immunomodulatory Properties of Lactic Acid Bacteria for Selection of Probiotics against Salmonella Infection in Broiler Chicks. Plos One, 11(1), https://doi.org/ARTNe014763010.1371/journal.pone.0147630

Feng, Y. Y., Qiao, L., Liu, R., Yao, H. M., & Gao, C. B. (2017). Potential probiotic properties of lactic acid bacteria isolated from the intestinal mucosa of healthy piglets. Annals of Microbiology, 67, 239-253. https://doi.org/10.1007/s13213-017-1254-6

Fung, W. Y., Woo, Y. P., Wan-Abdullah, W. N., Ahmad, R., Easa, A. M., & Liong, M. T. (2009). Benefits of probiotics: Beyond gastrointestinal health. Milchwissenschaft - Milk Science International, 64, 17-21.

Galdeano, C. M., de LeBlanc, A. D., Vinderola, G., Bonet, A. E. B., & Perdigon, G. (2007). Proposed model: Mechanisms of immunomodulation induced by probiotic bacteria. Clinical and Vaccine Immunology, 14, 485-492. https://doi.org/10.1128/Cvi.00406-06

Gotcheva, V., Hristozova, E., Hristozova, T., Guo, M. R., Roshkova, Z., & Angelov, A. (2002). Assessment of potential probiotic properties of lactic acid bacteria and yeast strains. Food Biotechnology, 16, 211-225. https://doi.org/10.1081/Fbt-120016668

Klindworth, A., Pruesse, E., Schweer, T., Peplies, J., Quast, C., Horn, M., & Glockner, F. O. (2013). Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Research, 41(1), https://doi.org/ARTNe110.1093/nar/gks808

Lertworapreecha, M., Noomee, S., Sutthimusik, S., Utarapichat, B., & Tontikapong, K. (2016). Multidrug resistant and extended spectrum beta-lactamase producing Salmonella enterica isolated from food animals in Phatthalung, Thailand. Southeast Asian Journal of Tropical Medicine and Public Health, 47(6), 1257-1269.

Lunden, J. M., Autio, T. J., & Korkeala, H. J. (2002). Transfer of persistent Listeria monocytogenes contamination between food-processing plants associated with a dicing machine. Journal of Food Protection, 65, 1129-1133. https://doi.org/10.4315/0362-028x-65.7.1129

Malik, A., Tóth, I., & Nagy, B. (2012). Colonization of conventional weaned pigs by enteropathogenic Escherichia coli (EPEC) and its hazard potential for human health. Acta Veterinaria Hungarica, 60(3), 297-307. https://doi.org/10.1556/AVet.2012.025

Marteau, P., Minekus, M., Havenaar, R., & Veld, J. H. J. H. I. (1997). Survival of lactic acid bacteria in a dynamic model of the stomach and small intestine: Validation and the effects of bile. Journal of Dairy Science, 80, 1031-1037. https://doi.org/10.3168/jds.S0022-0302(97)76027-2

Musa, H. H., Wu, S. L., Zhu, C. H., Seri, H. I., & Zhu, G. Q. (2009). The Potential Benefits of Probiotics in Animal Production and Health. Journal of Animal and Veterinary Advances, 8, 313-321.

Patterson, J. A., & Burkholder, K. M. (2003). Application of prebiotics and probiotics in poultry production. Poultry Science, 82, 627-631. https://doi.org/10.1093/ps/82.4.627

Prabhurajeshwar, C., & Chandrakanth, R. K. (2017). Probiotic potential of lactobacilli with antagonistic activity against pathogenic strains: An in vitro validation for the production of inhibitory substances. Biomedical Journal, 40, 270-283. https://doi.org/10.1016/j.bj.2017.06.008

Reid, G., & Bruce, A. W. (2001). Selection of Lactobacillus strains for urogenital probiotic applications. Journal of Infectious Diseases, 183, S77-S80. https://doi.org/10.1086/318841

Rodríguez, D. M., & Suárez, M. C. (2014). Salmonella spp. in the pork supply chain: a risk approach. Revista Colombiana de Ciencias Pecuarias, 27, 65-75.

Ruiz, L., Margolles, A., & Sánchez, B. (2013). Bile resistance mechanisms in Lactobacillus and Bifidobacterium. Frontiers in Microbiology, 4, 396-396. https://doi.org/10.3389/fmicb.2013.00396

Sablon, E., Contreras, B., & Vandamme, E. (2000). Antimicrobial Peptides of Lactic Acid Bacteria: Mode of Action, Genetics and Biosynthesis. Advances in Biochemical Engineering/Biotechnology, 68, 21-60. https://doi.org/10.1007/3-540-45564-7_2

Salminen, S., Nybom, S., Meriluoto, J., Collado, M. C., Vesterlund, S., & El-Nezami, H. (2010). Interaction of probiotics and pathogens-benefits to human health? Current Opinion in Biotechnology, 21, 157-167. https://doi.org/10.1016/j.copbio.2010.03.016

Tachedjian, G., Aldunate, M., Bradshaw, C. S., & Cone, R. A. (2017). The role of lactic acid production by probiotic Lactobacillus species in vaginal health. Research in Microbiology, 168(9), 782-792. https://doi.org/10.1016/j.resmic.2017.04.001

Tynkkynen, S., Singh, K. V., & Varmanen, P. (1998). Vancomycin resistance factor of Lactobacillus rhamnosus GG in relation to enterococcal vancomycin resistance (van) genes. International Journal of Food Microbiology, 41, 195-204. https://doi.org/10.1016/S0168-1605(98)00051-8

van der Aar, P. J., Molist, F., & van der Klis, J. D. (2017). The central role of intestinal health on the effect of feed additives on feed intake in pig and poultry. Animal Feed Science and Technology, 233, 64-75. https://doi.org/10.1016/j.anifeedsci.2016.07.019

Velez, M. P., Hermans, K., Verhoeven, T. L. A., Lebeer, S. E., Vanderleyden, J., & De Keersmaecker, S. C. J. (2007). Identification and characterization of starter lactic acid bacteria and probiotics from Columbian dairy products. Journal of Applied Microbiology, 103, 666-674. https://doi.org/10.1111/j.1365-2672.2007.03294.x

Vidhyasagar, V., & Jeevaratnam, K. (2013). Evaluation of Pediococcus pentosaceus strains isolated from Idly batter for probiotic properties in vitro. Journal of Functional Foods, 5, 235-243. https://doi.org/10.1016/j.jff.2012.10.012

Yamaguchi, T., Okihashi, M., Harada, K., Konishi, Y., Uchida, K., Do, M. H. N., . . . Yamamoto, Y. (2015). Antibiotic Residue Monitoring Results for Pork, Chicken, and Beef Samples in Vietnam in 2012-2013. Journal of Agricultural and Food Chemistry, 63, 5141-5145. https://doi.org/10.1021/jf505254y

Yun, J. H., Lee, K. B., Sung, Y. K., Kim, E. B., Lee, H. G., & Choi, Y. J. (2009). Isolation and characterization of potential probiotic lactobacilli from pig feces. Journal of Basic Microbiology, 49(2), 220-226. http://doi.org/10.1002/jobm.200800119

Zhao, Y., Su, J. Q., An, X. L., Huang, F. Y., Rensing, C., Brandt, K. K., & Zhu, Y. G. (2018). Feed additives shift gut microbiota and enrich antibiotic resistance in pig gut. Science of the Total Environment, 621, 1224-1232. https://doi.org/10.1016/j.scitotenv.2017.10.106

Downloads

Published

2021-05-28

Issue

Section

Research Articles