Stability Analysis and Optimal Control of a Hepatitis B Virus Transmission Model in the Presence of Vaccination and Treatment Strategy

Authors

  • Pensiri Yosyingyong Department of Mathematics, Faculty of Science, Naresuan University, Phitsanulok, 65000 Thailand
  • Ratchada Viriyapong Department of Mathematics, Faculty of Science, Naresuan University, Phitsanulok, 65000 Thailand

DOI:

https://doi.org/10.14456/nujst.2022.17

Keywords:

hepatitis B virus, HBV chronic carrier, vaccination, vertical transmission, optimal control

Abstract

        In this paper, the dynamics of hepatitis B virus (HBV) infection is studied through a mathematical model. The model includes vaccination class of population, vertical transmission of newborns and treatment of both acute HBV infected individuals and chronic HBV carriers. The stability of equilibria both locally and globally is analyzed. The result shows that the basic reproduction number becomes threshold value i.e. the disease-free equilibrium is globally stable when it is less than unity, and the infection is uniformly persistent and the endemic equilibrium is globally stable when it is greater than one. Further, an optimal control model is developed to seek the strategy to minimize the transmission of HBV. There are three control variables within the model which are prevention by vaccination, treatment of acute infected and treatment of chronic HBV carriers. Our numerical results show that among three controls, treatment of acute infected individuals gives the best impact in reducing the HBV infection. However, with three controls together, they give the best strategy in reducing overall HBV infection.

References

Allali, K., Meskaf, A., & Tridane, A. (2018). Mathematical modeling of the adaptive immune responses in the early stage of the HBV infection. International Journal of Differential Equations, 2018, 1-13. https://doi.org/10.1155/2018/6710575

Anderson, R. M., & May, R. M. (1991). Infectious diseases of humans: dynamics and control. UK: Oxford University Press.

Borgia, G., Carleo, M. A., Gaeta, G. B., & Gentile, I. (2012). Hepatitis B in pregnancy. World Journal of Gastroenterology, 18(34), 4677-4683.

Butler, G., Freedman, H. I., & Waltman, P. (1986). Uniformly persistent systems. Proceedings of the American Mathematical Society, 96(3), 425-430.

Chenar, F. F., Kyrychko, Y. N., & Blyuss, K. B. (2018). Mathematical model of immune response to hepatitis B. Journal of theoretical biology, 447, 98-110. https://doi.org/10.1016/j.jtbi.2018.03.025

Ciupe, S. M., Ribeiro, R. M., Nelson, P.W., Dusheiko, G., & Perelson, A.S. (2007). The role of cells refractory to productive infection in acute hepatitis B viral dynamics. Proceedings of the National Academy of Sciences, 104(12), 5050-5055. https://doi.org/10.1073/pnas.0603626104

Edmunds, W. J., Medley, G. F., & Nokes, D. J. (1996a). The transmission dynamics and control of hepatitis B virus in The Gambia. Statistics in medicine, 15(20), 2215-2233. https://doi.org/10.1002/(SICI)1097-0258(19961030)15:20<2215::AID-SIM369>3.0.CO;2-2

Edmunds, W. J., Medley, G.F., & Nokes, D. J. (1996b). Vaccination against hepatitis B virus in highly endemic areas: waning vaccine-induced immunity and the need for booster doses. Transactions of the Royal Society of Tropical Medicine and Hygiene, 90(4), 436-440. https://doi.org/10.1016/S0035-9203(96)90539-8

Eigenwillig, A. (2008). Real root isolation for exact and approximate polynomials using Descartes' rule of signs. Retrieved from https://www.publikationen.sulb.uni-saarland.de/handle/20.500.11880/26046

Eikenberry, S., Hews, S., Nagy, J.D., & Kuang, Y. (2009). The dynamics of a delay model of hepatitis B virus infection with logistic hepatocyte growth. Mathematical Biosciences & Engineering, 6(2), 283-299. https://doi.org/10.3934/mbe.2009.6.283

Emerenini, B.O., & Inyama, S.C. (2017). Mathematical model and analysis of transmission dynamics of hepatitis B virus. Retrieved from https://www.arXivpreprintarXiv:1710.11563

Freedman, H. I., Ruan, S., & Tang, M. (1994). Uniform persistence and flows near a closed positively invariant set. Journal of Dynamics and Differential Equations, 6(4), 583-600. https://doi.org/10.1007/BF02218848

Hepatitis B Foundation. (n.d.). What Is Hepatitis B?. Retrieved from https://www.hepb.org/what-is-hepatitis-b/what-is-hepb/acute-vs-chronic/

Jonas, M. M. (2009). Hepatitis B and pregnancy: an underestimated issue. Liver International, 29(1), 133-139. https://doi.org/10.1111/j.1478-3231.2008.01933.x

Kamyad, A.V., Akbari, R., Heydari, A. A., & Heydari, A. (2014). Mathematical modeling of transmission dynamics and optimal control of vaccination and treatment for hepatitis B virus. Computational and mathematical methods in medicine, 2014(1), 475451. https://doi.org/10.1155/2014/475451

Kimbir, A. R., Aboiyar, T., Abu, O., & Onah, E. S. (2014). Modelling hepatitis B virus transmission dynamics in the presence of vaccination and treatment. Mathematical Theory and Modeling, 4(12), 2224-5804.

Lavanchy, D. (2008). Chronic viral hepatitis as a public health issue in the world. Best Practice & Research Clinical Gastroenterology, 22(6), 991-1008. https://doi.org/10.1016/j.bpg.2008.11.002

Li, Y., & Muldowney, J. S. (1993). On Bendixson’s criterion. Journal of Differential Equations, 106(1), 27-39. https://doi.org/10.1006/jdeq.1993.1097

Li, M.Y., & Muldowney, J. S. (1996). A geometric approach to global-stability problems. SIAM Journal on Mathematical Analysis, 27(4), 1070-1083. https://doi.org/10.1137/S0036141094266449

Medley, G.F., Lindop, N. A., Edmunds, W. J., & Nokes, D. J. (2001). Hepatitis-B virus endemicity: heterogeneity, catastrophic dynamics and control. Nature medicine, 7(5), 619-624. https://doi.org/10.1038/87953

Mendy, M., Peterson, I., Hossin, S., Peto, T., Jobarteh, M.L., Jeng-Barry, A., … Whittle, H. (2013). Observational study of vaccine efficacy 24 years after the start of Hepatitis B vaccination in two gambian villages: no need for a booster dose. PLOS One, 8(3), e58029. https://doi.org/10.1371/journal.pone.0058029

Nowak, M. A., Bonhoeffer, S., Hill, A. M., Boehme, R., Thomas, H. C., & McDade, H. (1996). Viral dynamics in hepatitis B virus infection. Proceedings of the National Academy of Sciences, 93(9), 4398-4402. https://doi.org/10.1073/pnas.93.9.4398

Nowak, M. A., & May, R. M. (2000). Viral dynamics. UK: Oxford University Press.

Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., & Mishchenko, E.F. (1986). In L. S. Pontryagin (Ed.), The Mathematical Theory of Optimal Processes. New York: Gordon and BS Publishers.

Thornley, S., Bullen, C., & Roberts, M. (2008). Hepatitis B in a high prevalence New Zealand population: a mathematical model applied to infection control policy. Journal of Theoretical Biology, 254(3), 599-603. https://doi.org/10.1016/j.jtbi.2008.06.022

van den Driessche, P., & Watmough, J. (2002). Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Mathematical biosciences, 180(1-2), 29-48. https://doi.org/10.1016/S0025-5564(02)00108-6

WHO. (2002) Hepatitis B. Retrieved from https://apps.who.int/iris/handle/10665/67746

WHO. (2020). Hepatitis B Fact Sheet. Retrieved from https://www.who.int/en/news-room/fact-sheets/detail/hepatitis-b

Yosyingyong, P., & Viriyapong, R. (2019). Global stability and optimal control for a hepatitis B virus infection model with immune response and drug therapy. Journal of Applied Mathematics and Computing, 60(1-2), 537-565. https://doi.org/10.1007/s12190-018-01226-x

Zhang, T., Wang, K., & Zhang, X. (2015). Modeling and Analyzing the Transmission Dynamics of HBV Epidemic in Xinjiang. China. Journal PLOS One, 10(9), 1-14. https://doi.org/10.1371/journal.pone.0138765

Zhang, S., & Zhou, Y. (2012). The analysis and application of an HBV model. Applied Mathematical Modelling, 36(3), 1302-1312. https://doi.org/10.1016/j.apm.2011.07.087

Zhao, S., Xu, Z., & Lu, Y. (2000). A mathematical model of hepatitis B virus transmission and its application for vaccination strategy in China. International journal of epidemiology, 29(4), 744-752. https://doi.org/10.1093/ije/29.4.744

Zou, L., Zhang, W., & Ruan, S. (2010). Modeling the transmission dynamics and control of hepatitis B virus in China. Journal of theoretical biology, 262(2), 330-338. https://doi.org/10.1016/j.jtbi.2009.09.035

Downloads

Published

2021-08-17

Issue

Section

Research Articles