In Vitro Assessment of Probiotic Properties in Lactobacillus Strains Isolated from Traditionally Fermented Thai Foods

Authors

  • Supachai Nitipan Department of Biology, Faculty of Science, Thaksin University, Phattalung Campus, Phattalung 93210 Thailand
  • Kantida Boonloy Department of Biology, Faculty of Science, Thaksin University, Phattalung Campus, Phattalung 93210 Thailand
  • Hudadini Da-oh Department of Biology, Faculty of Science, Thaksin University, Phattalung Campus, Phattalung 93210 Thailand
  • Jirawut Permpool Department of Biology, Faculty of Science, Thaksin University, Phattalung Campus, Phattalung 93210 Thailand
  • Pramaun Saithong Department of Applied Microbiology, Institute of Food Research and Product Development, Kasetsart University, Bangkok 10900 Thailand.

DOI:

https://doi.org/10.14456/nujst.2022.12

Keywords:

Lactic acid bacteria, Probiotics, Lactobacillus plantarum, Lactobacillus acidophilus, Traditionally fermented Thai food

Abstract

        Traditionally fermented Thai foods are good sources for Lactobacilli isolation due to these food types include a wide variety of ingredients. A total of 82 Lactobacillus strains were preliminarily isolated from Pla-Som, Pla-Duk-Ra, Pla-Pang-Dang, Kung-Som, and Nham-Hed-Nang-Fa. Their 16S rDNA sequences showed homology to L. plantarumL. lactisL. amylovorusL. caseiL. acidophilusL. farciminis, and L. graminis. Gastrointestinal tract experimental found 10 isolates that can survive at pH 2.5 and 0.9% bile salt concentration. Remaining 4 isolates of L. plantarum (LpWP48/12, LpNH48/12) and L. acidophilus (LacKS48/15, LacWP48/22) had antagonistic activity against human pathogens including Staphylococcus aureus (TISTR 746)Escherichia coli (TISTR 527)Pseudomonas aeroginosa (TISTR 357)Salmonella Typhi, and Shigella dysentery. All four isolates were resistant to streptomycin, cefotetan, nalidixic acid, vancomycin, kanamycin, and methicillin. PCR analysis revealed positive identification of the bshatpD and mapA genesThe virulence-related genes cylAaceesp and gelE were found to be absentAs a result, L. plantarum (LpWP48/12 and LpNH48/12) and L. acidophilus (LacKS48/15 and LacWP48/22) showed potential as probiotic candidates and were safe to use as starter culture.

References

Begley, M., Hill, C., & Gahan, C. G. (2006). Bile salt hydrolase activity in probiotics. Applied Environmental Microbiology, 72, 1729 -1738. http://dx.doi.org/10.1128/AEM.72.3.1729-1738.2006

Behera, S. S., Ray, R. C., & Zdolec, N. (2018). Lactobacillus plantarum with functional properties: An approach to increase safety and shelf-life of fermented foods. BioMed Research International, 2018, 1-18. http://dx.doi.org/10.1155/2018/9361614

Botthoulath, V., Upaichit, A., & Thumarat, U. (2018). Identification and in vitro assessment of potential probiotic characteristics and antibacterial effects of Lactobacillus plantarum subsp. plantarum SKI19, a bacteriocinogenic strain isolated from Thai fermented pork sausage. Journal of Food Science and Technology, 55(7), 2774-2785. http://dx.doi.org/10.1007/s13197-018-3201-3

Buck, B. L., Altermann, E., Svingerud, T., & Klaenhammer, T. R. (2005). Functional analysis of putative adhesion factors in Lactobacillus acidophilus NCFM. Applied Environmental Microbiology, 71, 8344-8351. http://dx.doi.org/10.1128/AEM.71.12.8344-8351.2005

Chow, J. W., Thal, L. A., Perri, M. B., Vazquez, J. A., Donabedian, S. M., Clewell, D. B., & Zervos, M. J. (1993). Plasmid-associated hemolysin and aggregation substance production contribute to virulence in experimental enterococcal endocarditis. Antimicrobial Agent Chemotherapy, 37, 2474-2477. http://dx.doi.org/10.1128/aac.37.11.2474

Clinical and Laboratory Standard Institute. (2009). Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard (10th ed.). Wayne, Pa, USA: Clinical and Laboratory Standard Institute.

Danielsen, M., & Wind, A. (2003). Susceptibility of Lactobacillus spp. to antimicrobial agents. International Journal of Food Microbiology, 82(1), 1-11. http://dx.doi.org/10.1016/s0168-1605(02)00254-4

Duary, R. K., Batish, V. K., & Grover, S. (2010). Expression of the atpD gene in probiotic Lactobacillus plantarum strains under in vitro acidic conditions using RT-qPCR. Research in Microbiology, 161(5), 399-405. http://dx.doi.org/10.1016/j.resmic.2010.03.012

European Food Safety Authority. (2013). Scientific opinion on the maintenance of the list of QPS biological agents intentionally added to food and feed (2013 update). The European Food Safety Authority Journal, 11(11), 1-108. http://dx.doi.org/10.2903/j.efsa.2013.3449

Ghosh, K., Ray, M., Adak, A., Halder, S. K., Das, A., Jana, A., & Mondal, K. C. (2015). Role of probiotic Lactobacillus fermentum KKL1 in the preparation of a rice based fermented beverage. Bioresource Technology, 188, 161-168. http://dx.doi.org/10.1016/j.biortech.2015.01.130

Gong, H. S., Meng, X. C., & Wang, H. (2010). Plantaricin MG active against Gram-negative bacteria produced by Lactobacillus plantarum KLDS1.0391 isolated from ‘‘Jiaoke’’, a traditional fermented cream from China. Food Control, 21, 89-96. http://dx.doi.org/10.1016/j.foodcont.2009.04.005

Gutschik, E., Moller, S., & Christensen, N. (1979). Experimental endocarditis in rabbits. 3. Significance of the proteolytic capacity of the infecting strains of Streptococcus faecalis. Acta Pathologica et Microbiologica Scandinavica Section B, 87, 353-362.

Handwerger, S., Pucci, M. J., Volk, K. J., Liu, J., & Lee, M. S. (1994). Vancomycin-resistant Leuconostoc mesenteroides and Lactobacillus casei synthesize cytoplasmic peptidoglycan precursors that terminate in lactate. Journal of Bacteriology, 176(1), 260-264. http://dx.doi.org/10.1128/jb.176.1.260-264.1994

Hu, C. H., Ren, L. Q., Zhou, Y., & Ye, B. C. (2019). Characterization of antimicrobial activity of three Lactobacillus plantarum strains isolated from Chinese traditional dairy food. Food Science Nutrition, 7(6), 1997-2005. http://dx.doi.org/10.1002/fsn3.1025

Jacobsen, C. N., Nielsen, V. R., Hayford, A. E., Moller, P. L., Michaelsen, K. F., Paerregaard, Jakobsen, M. (1999). Screening of probiotic activities of forty-seven strains of Lactobacillus spp. by in vitro techniques and evaluation of the colonization ability of five selected strains in humans. Applied Environmental Microbiology, 65(11), 4949-4956. http://dx.doi.org/10.1128 /AEM.65.11. 4949-4956.1999

Jin, L. Z., Ho, Y. W., Abdullah, N., & Jalaludin, S. (1998). Acid and bile tolerance of Lactobacillus isolated from chicken intestine. Letter in Applied Microbiology, 27(3), 183-185. http://dx.doi.org/10.1046/j.1472-765x.1998.00405.x

Klayraung, S., Viernstein, H., Sirithunyalug, J., & Okonogi, S. (2008). Probiotic properties of lactobacilli isolated from Thai traditional food. Scientia Pharmaceutica, 76(3), 485-503. http://dx.doi.org/10.3797/scipharm.0806-11

Klein, G., Hallmann, C., Casas, I. A., Abad, J., Louwers, J., & Reuter, G. (2000). Exclusion of vanA, vanB and vanC type glycopeptide resistance in strains of Lactobacillus reuteri and Lactobacillus rhamnosus used as probiotics by polymerase chain reaction and hybridization methods. Journal of Applied Microbiology, 89(5), 815-824. http://dx.doi.org/10.1046/j.1365-2672.2000.01187.x

Koll, P., Mandar, R., Marcotte, H., Leibur, E., Mikelsaar, M., & Hammarstrom, L. (2008). Characterization of oral Lactobacilli as potential probiotics for oral health. Oral Microbiology Immunity, 23(2), 139-147. http://dx.doi.org/10.1111/j.1399-302X.2007.00402.x

Lim, S. M. (2009). Screening and characterization of probiotic lactic acid bacteria isolated from Korean fermented foods. Journal of Microbiology and Biotechnology, 19(2), 178-186. http://dx.doi.org/10.4014/jmb.0804.269

Lindenstrauss, A. G., Pavlovic, M., & Bringmann, A. (2011). Comparison of genotypic and phenotypic cluster analyses of virulence determinants and possible role of CRISPR elements towards their incidence in Enterococcus faecalis and Enterococcus faecium. Systematic and Applied Microbiology, 34(8), 553-560. http://dx.doi.org/10.1016/j.syapm.2011.05.002

Liong, M. T., & Shah, N. P. (2005). Acid and bile tolerance and cholesterol removal ability of lactobacilli strains. Journal of Dairy Science, 88(1), 55-66. http://dx.doi.org/10.3168/jds.S0022-0302(05)72662-X

Martı´n-Platero, A. M., Valdivia, E., Maqueda, M., & Martı´nez-Bueno, M. (2009). Characterization and safety evaluation of enterococci isolated from Spanish goats’ milk cheeses. International Journal of Food Microbiology, 132, 24-32. http://dx.doi.org/10.1016/j.ijfoodmicro.2009.03.010

Mulaw, G., Tessema, T. S., Muleta, D., & Tesfaye, A. (2019). In Vitro Evaluation of Probiotic Properties of Lactic Acid Bacteria Isolated from Some Traditionally Fermented Ethiopian Food Products. International Journal of Microbiology, 7179514, 1-11. http://dx.doi.org/10.1155/2019/7179514

Neal-McKinney, J. M., Lu, X., Duong, T., Larson, C. L., Call, D. R., Shah, D. H., & Konkel, M. E. (2012). Production of organic acids by probiotic lactobacilli can be used to reduce pathogen load in poultry. PLoS ONE, 7(9), 43928. http://dx.doi.org/10.1371/journal.pone.0043928

O’Sullivan, L., Ross, R. P., & Hill, C. (2002). Potential of bacteriocin producing lactic acid bacteria for improvements in food safety and quality. Biochimie, 84(5-6), 593-604. http://dx.doi.org/10.1016/s0300-9084(02)01457-8

Pavlova, S. I., Kilic, A. O., Kilic, S. S., So, J. S., Nader-Macias, M. E., Simone, J. A., & Tao, L. (2002). Genetic diversity of vaginal lactobacilli from women in different countries based on 16S rRNA gene sequences. Journal of Applied Microbiology, 92(3), 451-459. http://dx.doi.org/10.1046/j.1365-2672.2002.01547.x

Pisano, M. B., Viale, S., Conti, S., Fadda, M. E., Deplano, M., Melis, M. P., … & Cosentino, S. (2014).Preliminary Evaluation of Probiotic Properties of Lactobacillus Strains Isolated from Sardinian Dairy Products. BioMed Research International, 2014, 1-9. http://dx.doi.org/10.1155/2014/286390

Rodgers, S. (2008). Novel applications of live bacteria in food services: probiotics and protective cultures. Trends Food Science and Technology, 19(4), 188-197. http://dx.doi.org/10.1016/j.tifs.2007.11.007

Sahadeva, R. P. K., Leong, S. F., K., Chua, H., Tan, C. H., Chan, H. Y., Tong, E. V., … & Chan, H. K. (2011). Survival of commercial probiotic strains to pH and bile. International Food Research Journal, 18(4), 1515-1522.

Salminen, S., Wright, A. V., Morelli, L., Marteau, P., Brassart, D., Vos, … Mattila-Sandholm, T. (1998). Demonstration of safety of probiotics-a review. International Journal of Food Microbiology, 44(1-2), 93-106. http://dx.doi.org/10.1016/s0168-1605(98)00128-7

Schillinger, U., & Lücke F. K. (1989). Antibacterial activity of Lactobacillus sake isolated from meat. Applied and Environmental Microbiology, 55(8), 1901–1906. http://dx.doi.org/1901-1906.10.1128/aem.55.8.1901-1906.1989

Shokryazdan, P., Sieo, C. C., Kalavathy, R., Liang, J. B., Alitheen, N. B., Jahromi, M. F., & Ho, Y. W. (2014). Probiotic Potential of Lactobacillus Strains with Antimicrobial Activity against Some Human Pathogenic Strains. BioMed Research International, 927268, 1-16. http://dx.doi.org/10.1155/2014/927268

Suskovic, J., Blazenka, K., Beganovic, J., Pavunc, A.L., Habjanic, K., & Matosic, S. (2010). Antimicrobial activity-the most important property of probiotic and starter lactic acid bacteria. Food Technology and Biotechnology, 48(3), 296-307.

Tan, Q., Xu, H., Aguilar, Z. P., Peng, S., Dong, S., Wang, B., … Wei, H. (2013). Safety assessment and probiotic evaluation of Enterococcus faecium YF5 isolated from sourdough. Journal of Food Science, 78(4), 587-593. http://dx.doi.org/10.1111/1750-3841.12079

Todorov, S. D., Botes, M., Guigas, C., Schillinger, U., Wiid, I., Wachsman, M. B., … Dicks, L. M. T. (2008). Boza, a natural source of probiotic lactic acid bacteria. Journal of Applied Microbiology, 104, 465-477. http://dx.doi.org/10.1111/j.1365-2672.2007.03558.x

Ventura, M., Canchaya, C., Sinderen, D. V., Fitzgerald, G. F., & Zink, R. (2004). Bifidobacterium lactis DSM 10140: Identification of the atp (atpBEFHAGDC) Operon and Analysis of Its Genetic Structure, Characteristics, and Phylogeny. Applied Environmental Microbiology, 70(5), 3110-3121. http://dx.doi.org/10.1128/AEM.70.5.3110-3121.2004

Visessanguan, W., Plengvidha, V., Chokesajjawatee, N., & Baker, J. A. (2015). Lactic meat fermentation InJ. D. Owens (ed.). indigenous fermented foods of Southeast Asia. NY: CRC Press.

Zago, M., Fornasari, M. E., Carminati, D., Burns, P., Suarez, V., Vinderola, G., … Giraffa, G. (2011). Characterization and probiotic potential of Lactobacillus plantarum strains isolated from cheeses. Food Microbiology, 28, 1033-1040. http://dx.doi.org/10.1016/j.fm.2011.02.009

Zhang, B., Wang, Y., Tan, Z., Li, Z., Jiao, Z., & Huang, Q. (2016). Screening of probiotic activities of lactobacilli strains isolated from traditional Tibetan Qula, a raw yak milk cheese. Asian-Australasian Journal of Animal Science, 29(10), 1490-1499. http://dx.doi.org/10.5713/ajas.15.0849

Zhao, S., Han, J., Bie, X., Lu, Z., Zhang, C., & Fengxia, L. V. (2016). Purification and Characterization of Plantaricin JLA-9: A Novel Bacteriocin against Bacillus spp. Produced by Lactobacillus plantarum JLA 9 from Suan-Tsai, a Traditional Chinese Fermented Cabbage. Journal of Agricultural and Food Chemistry, 64, 2754-2764. http://dx.doi.org/10.1021/acs.jafc.5b05717

Downloads

Published

2021-08-11

Issue

Section

Research Articles