On bi-bases of ordered G-semigroups

Authors

  • Wichayaporn Jantanan Department of Mathematics Faculty of Science Buriram Rajabhat University Buriram 31000
  • Monthean Latthi Department of Mathematics Faculty of Science Buriram Rajabhat University Buriram 31000
  • Jiriya Puifai Department of Mathematics Faculty of Science Buriram Rajabhat University Buriram 31000

DOI:

https://doi.org/10.14456/nujst.2022.28

Keywords:

ordered G-Semigroup, bi-G-ideal, bi-base, quasi-order

Abstract

        In this paper, based on the results of ordered bi-ideals generated by a non-empty subset of an ordered G-semigroups ,  we introduce the concept of bi-base of M. Using the quasi-order on M defined by the principal ordered bi-ideals of M. we characterize when a non-empty subset of  M is a bi-base of M. The results obtained extending the results on G-semigroup.

References

Changphas, T., & Sammaprab, P. (2014). On Two sided bases of an ordered semigroup. Quasi-group and Related Systems, 22(1), 59-66. Retrieved from http://www.quasigroups.eu

Chinnadurai, V., & Arulmozhi, K. (2018). Characterization of bipolar fuzzy ideals in ordered gamma semigroups. Journal of The International Mathematical Virtual Institute, 8, 141-156. Retrieved from https://www.imvibl.org/journal.htm

Chinram, R., & Tinpun, K. (2009). A note on minimal bi-ideals in ordered -semigroups. International Mathematical Forum, 4(1), 1-5. Retrieved from http://www.m-hikari.com/aims.html

Fabrici, I. (1975). Two-sided bases of semigroups. Matematick´y ˇCasopis, 25(2), 173-178. Retrieved from http://dml.cz/dmlcz/126947

Iampan, A. (2009).Characterizing Ordered Bi-Idealsin Ordered -Semigroups. Iranian Journal of Mathematical Sciences and Informatics, 4(1), 17-25. Retrieved from http://dx.doi.org/10.7508/ijmsi.2009.01.002

Kehayopulu, N. (2010), On ordered -semigroups. Scientiae Mathematicae Japonicae, 23, 37-43.

Kummoon, P., & Changphas, T. (2017). Bi-Bases of -semigroup. Thai Journal of Mathematics, 75-86. Retrieved from http://thaijmath.in.cmu.ac.th

Kummoon, P., & Changphas, T. (2017). On bi-base of semigroup. Quasigroup and Related Systems, 25(1), 87-94. Retrieved from http://www.quasigroups.eu

Sen, M.K. (1981). On Γ-semigroups.Proceedings of International Conference on Algebra and It’s Applications, New York, 301-308.

Sen, M. K., & Saha, N. K. (1986). On Γ-semigroup I. Bulletin of Calcutta Mathematical Society, 78, 180-186.

Saha, N. K. (1987). On Γ-semigroup II. Bulletin of Calcutta Mathematical Society, 79, 331-335.

Saha, N. K. (1998). On Γ-semigroup III. Bulletin of Calcutta Mathematical Society, 80, 1-13.

Downloads

Published

2021-10-28

Issue

Section

Research Articles