Isolation and Characterization of Bacteriophage which Infected Klebsiella pneumoniae
DOI:
https://doi.org/10.14456/nujst.2022.39Keywords:
K, pneumoniae, bacteriophages, biofilm, MyoviridaeAbstract
Klebsiella pneumoniae is a clinically significant organism that has caused much public health concern. Due to the increasing prevalence of infections caused by multidrug-resistant K. pneumoniae, alternative therapies might be promising. The properties of host specificity, abundance in nature, and evolvability suggest bacteriophages might be a good candidate. In this study, we have isolated and characterized a lytic bacteriophage infecting K. pneumoniae, ØKN-2, which was isolated from wastewater. The transmission electron micrograph showed that ØKN-2 was classified as being in the Myoviridae family. Host-range determination revealed that ØKN-2 is specifically able to lyse 35.7% (5/14) of tested K. pneumoniae. Studies of the host range of different species showed that ØKN-2 unable to lyse other tested bacteria including Acinetobacter baumannii, Peudomonas aeruginosa, Protues mirabilis, Enterococcus faecalis, and Escherichia coli. Interestingly, ØKN-2 significantly reduced K. pneumoniae ATCC 700603 biofilm preformed in a dose dependent manner. Therefore, this study identified and tested bacteriophages that infect K. pneumoniae and proved the effectiveness of ØKN-2 against biofilm and host-specific characteristics which indicates that they are beneficial in the development of treatments against K. pneumoniae infections.
References
Ackerman, H.W. (2009). Phage classification and characterization. Methods in Molecular Biology, 501, 127-140.
Babapour, E., Haddadi, A., Mirnejad, R., Angaji, S., & Amirmozafari, N. (2016). Biofilm formation in clinical isolates of nosocomial Acinetobacter Baumannii and its relationship with multidrug resistance. Asian Pacific Journal of Tropical Biomedicine, 6, 528–533. https://doi.org/10.1016/j.apjtb.2016.04.006
Bengoechea, J. A., & Pessoa, J. S. (2019). Klebsiella pneumoniae infection biology: living to counteract host defenses. FEMS Microbiol, 43, 123–144.
Bhetwal, A., Maharjan, A., Shakya, S., Satyal, D., Ghimire, S., Khanal, R. P., & Parajuli, N. P. (2017). Isolation of potential phages against multidrug-resistant bacterial isolates: Promising agents in the rivers of Kathmandu, Nepal. BioMed Research International, 2017, 3723254. https://doi.org/10.1155/2017/3723254
Breitbart, M. L., Wegley, S., Leeds, T., Schoenfeld, & Rohwer, F. (2004). Phage community dynamics in hot springs. Applied & Environmental Microbiology, 70, 1633-1640. https://doi.org/10.1128/AEM.70.3.1633-1640.2004
Bruessow, H. (2013). Bacteriophage-host interaction: from splendid isolation into a messy reality. Current Opinion in Microbiology, 16, 500–506.
Cao, F., Wang, X., Wang, L., Li, Z., Che, J., Wang, L., ... & Xu, Y. (2015). Evaluation of the efficacy of a bacteriophage in the treatment of pneumonia induced by multidrug resistance Klebsiella pneumoniae in mice. BioMed Research International. http://dx.doi.org/10.1155/2015/752930
Chhibber, S., Kaur, S., & Kumari, S. (2008). Therapeutic potential of bacteriophage in treating Klebsiella pneumoniae B5055-mediated lobar pneumonia in mice. Journal of Medical Microbiology, 57, 1508–1513. https://doi.org/10.1099/jmm.0.2008/002873-0
Chhibber, S., Nag, D., & Bansal, S. (2013). Inhibiting biofilm formation by Klebsiella pneumoniae B5055 using an iron antagonizing molecule and a bacteriophage. BMC microbiology, 13(1), 1-8. https://doi.org/10.1186/1471-2180-13-174
Chhibber, S., Bansal, S., Kaur, S. (2015). Disrupting the mixed-species biofilm of Klebsiella pneumoniae B5055 and Pseudomonas aeruginosa PAO using bacteriophages alone or in combination with xylitol. Microbiology, 161, 1369–1377. https://doi.org/10.1099/mic.0.000104
Christensen, B. E., (1989). The role of extracellular polysaccharides in biofilms. Journal of Biotechnology, 10, 181-202.
Donlan, R. M. (2001). Biofilms and device-associated infections. Emerging Infectious Diseases, 7, 277–281.
Donlan, R. M. (2002). Biofilms: microbial life on surfaces. Emerging infectious diseases, 8(9), 881–890.
Donlan, R. M, & Costerton, J. W. (2002). Biofilms: survival mechanisms of clinically relevant microorganisms. Clinical microbiology reviews, 15, 167–193.
Effah, C. Y., Sun, T., Liu, S., & Wu, Y. (2020). Klebsiella pneumoniae: An increasing threat to public health. Annals of clinical microbiology and antimicrobials, 19(1), 1-9. https://doi.org/10.1186/s12941-019-0343-8.
Fu, W., Forster, T., Mayer, O., Curtin, J. J., Lehman, S. M., & Donlan, R. M. (2010). Bacteriophage cocktail for the prevention of biofilm formation by Pseudomonas aeruginosa on catheters in an in vitro model system. Antimicrobial agents and chemotherapy, 54, 397–404.
Lin, T. L., Hsieh, P. F., Huang, Y. T., Lee, W. C., Tsai, Y. T., Su, P. A., ... & Wang, J. T. (2014). Isolation of a bacteriophage and its depolymerase specific for K1 capsule of Klebsiella pneumoniae: implication in typing and treatment. The Journal of infectious diseases, 210(11), 1734–1744.
Nirwati, H., Sinanjung, K., Fahrunissa, F., Wijaya, F., Napitupulu, S., Hati, V. P., ... & Nuryastuti, T. (2019). Biofilm formation and antibiotic resistance of Klebsiella pneumoniae isolated from clinical samples in a tertiary care hospital, Klaten, Indonesia. In BMC proceedings, 13(11), 1-8, BioMed Central.
Pan, Y. J., Lin, T. L., Chen, Y. Y., Lai, P. H., Tsai, Y. T., Hsu, C. R., ... & Wang, J. T. (2019). Identification of three podoviruses infecting Klebsiella encoding capsule depolymerases that digest specific capsular types. Microbial biotechnology, 12(3), 472-486.
Paterson, D. L., Ko, W. C., Von Gottberg, A., Mohapatra, S., Casellas, J. M., Goossens, H., … Yu, V. L. (2004). International prospective study of Klebsiella pneumoniae bacteremia: implications of extended-spectrum beta-lactamase production in nosocomial Infections. Annals of internal medicine, 140(1), 26–32. https://doi.org/10.7326/0003-4819-140-1-200401060-00008
Parasion, S., Kwiatek, M., Gryko, R., Mizak, L., & Malm, A. (2014). Bacteriophages as an alternative strategy for fighting biofilm development. Polish Journal of Microbiology, 63, 137–145.
Rock, C., Thom, K. A., Masnick, M., Johnson, J. K., Harris, A. D., & Morgan, D. J. (2014). Frequency of Klebsiella pneumoniae carbapenemase (KPC)-producing and non-KPC-producing Klebsiella species contamination of healthcare workers and the environment. Infection control and hospital epidemiology. 35, 426–429. https://doi.org/doi:10.1086/675598.
Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: a laboratory manual (No. Ed. 2). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
Solomon, S. L., & Oliver, K. B. (2014). Antibiotic resistance threats in the United States: stepping back from the brink. American family physician, 89, 938–941.
Stone, E., Campbell, K., Grant, I., & McAuliffe, O. (2019). Understanding and Exploiting Phage-Host Interactions. Viruses, 11(6), 567. https://doi.org/10.3390/v11060567
Taha, O. A., Connerton, P. L., Connerton, I. F., & El-Shibiny, A. (2018). Bacteriophage ZCKP1: A potential treatment for Klebsiella pneumoniae isolated from diabetic foot patients. Front Microbiol, 9, 2127. https://doi.org/10.3389/fmicb.2018.02127
Tian, F., Li, J., Nazir, A., & Tong, Y. (2021). Bacteriophage – A Promising Alternative Measure for Bacterial Biofilm Control. Infect Drug Resist, 14, 205-217.
Vuotto, C., Longo, F., Balice, M. P., Donelli, G., & Varaldo, P. E. (2014). Antibiotic resistance related to biofilm formation in Klebsiella pneumoniae. Pathogens, 3, 743–758. https://doi.org/10.3390/pathogens3030743
Wang, C., Li, P., Niu, W., Yuan, X., Liu, H., & Huang, Y. (2019). Protective and therapeutic application of the depolymerase derived from a novel KN1 genotype of Klebsiella pneumoniae bacteriophage in mice. Research in Microbiology, 170, 156–164.
Wintachai, P., Naknaen, A., Thammaphet, J., Pomwised, R., Phaonakrop,n., Roytrakul, S., & Thammaphet, J. (2020). Characterization of extended-spectrum-β-lactamase producing Klebsiella pneumoniae phage KP1801 and evaluation of therapeutic efficacy in vitro and in vivo. Scientific Reports, 10, 11803.
Wu, L. T., Chang, S. Y., Yen, M. R., Yang, T. C., & Tseng, Y. H. (2007). Characterization of extended-host-range pseudo-T-even bacteriophage Kpp95 isolated on Klebsiella pneumoniae. Applied and Environmental Microbiology, 73, 2532–2540. https://doi.org/10.1128/AEM.02113-06
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Naresuan University Journal: Science and Technology
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.