The Analysis of Tourism Attitudes using Natural Language Processing Techniques: A Case of Malaysian Tourists

Authors

  • Md Tareq Bin Hossain Thammasat Business School, Tha Prachan, Bangkok, 10200, Thailand
  • Ruchdee Binmad Research Center for Business Intelligence and Analytics, Faculty of Management Sciences, Prince of Songkla University, 90110, Thailand

DOI:

https://doi.org/10.69650/ahstr.2024.1152

Keywords:

Sentiment analysis, Topic modeling, COVID-19, Tourist’s attitudes, Malaysian Tourists

Abstract

The spread of COVID-19 has had a significant impact on all facets of the global tourism sector, particularly in Thailand, one of the world’s leading travel destinations. At the height of the epidemic, many countries imposed a nationwide lockdown, prohibiting all citizens from leaving the country and all foreign tourists from entering. This led to a global shutdown that significantly affected the daily lives of billions of people and seriously impacted the travel and tourism industry. After a two-year hiatus due to the epidemic, the situation eased and the lockdown restrictions were lifted. An interesting question is how visitors’ attitudes and preferences changed when compared to the time before the outbreak. This study attempts to answer this question by focusing on Malaysian visitors’ attitudes and perceptions toward destinations in southern Thailand. The study examines the perceptions of Malaysian Twitter (now X) users from three areas in Malaysia; Kedah, Perlis, and Kuala Lumpur, by employing Natural Language Processing (NLP) techniques such as sentiment analysis and topic modeling. Then, tweet data before and after the lockdowns were gathered, analyzed, and compared. For sentiment analysis, it was found that, when neutral tweets were disregarded, results both before and after the COVID-19 lockdowns revealed that the attitudes conveyed by Malaysian tourists were overall positive especially a territory and a state that are more far away from Thailand, i.e., Kuala Lumpur and Kedah. The results from the topic modeling analysis showed a meaningful distinction between before and after the COVID-19 lockdowns. Practical suggestions are offered for tourism policymakers to identify and address both the strengths and weaknesses of tourism development in Southern Thailand.

References

Abd-Alrazaq, A., Alhuwail, D., Househ, M., Hamdi, M., & Shah, Z. (2020). Top Concerns of Tweeters During the COVID-19 Pandemic: Infoveillance Study. Journal of Medical Internet Research, 22(4), 1-9. http://dx.doi.org/10.2196/19016 DOI: https://doi.org/10.2196/19016

Ainin, S., Feizollah, A., Anuar, N. B. & Abdullah, N. A. (2020). Sentiment Analyses of Multilingual Tweets on Halal Tourism. Tourism Management Perspectives, 34, 1-8. https://doi.org/10.1016/j.tmp.2020.100658 DOI: https://doi.org/10.1016/j.tmp.2020.100658

Anandarajan, M., Hill, C., & Nolan, T. (2019). Latent Semantic Analysis (LSA) in Python. In Practical Text Analytics, Maximizing the Value of Text Data: Advances in Analytics and Data Science, 2, (pp. 221-242). Springer, Cham. https://doi.org/10.1007/978-3-319-95663-3_14 DOI: https://doi.org/10.1007/978-3-319-95663-3_14

Anupama, V., & Elayidom, M. S. (2022). Course Recommendation System: Collaborative Filtering, Machine Learning and Topic Modelling [Conference session]. 8th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India. https://doi.org/10.1109/ICACCS54159.2022.9785353 DOI: https://doi.org/10.1109/ICACCS54159.2022.9785353

Asan, K. (2021). Covid-19 Pandemic on Youth Tourism. Journal of Mediterranean Tourism Research, 1(1), 12-21. DOI: https://doi.org/10.5038/2770-7555.1.1.1002

Balasubramanian, S., Kaitheri, S., Nanath, K., Sreejith, S., & Paris, C. M. (2021). Examining Post COVID-19 Tourist Concerns Using Sentiment Analysis and Topic Modeling. In W. Wörndl, C. Koo, & J. L. Stienmetz (Eds.), Information and Communication Technologies in Tourism 2021. Springer, Cham. https://doi.org/10.1007/978-3-030-65785-7_54 DOI: https://doi.org/10.1007/978-3-030-65785-7_54

Bayer, M., Kaufhold, M.-A., Buchhold, B., Keller, M., Dallmeyer, J., & Reuter, C. (2021). Data Augmentation in Natural Language Processing: A Novel Text Generation Approach for Long and Short Text Classifiers. International Journal of Machine Learning and Cybernetics, 14(1), 135-150. https://doi.org/10.1007/s13042-022-01553-3 DOI: https://doi.org/10.1007/s13042-022-01553-3

Binabdullah, K., & Tongtep, N. (2021). Comparative Study on Natural Language Processing for Tourism Suggestion System [Conference session]. 36th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC), Jeju, Korea (South). IEEE. https://doi.org/10.1109/ITC-CSCC52171.2021.9501422 DOI: https://doi.org/10.1109/ITC-CSCC52171.2021.9501422

Binmad, R., & Li, M. (2018). Psychology-Inspired Trust Restoration Framework in Distributed Multi-Agent Systems. Scientific Programming, 2018, 1-15. https://doi.org/10.1155/2018/7515860 DOI: https://doi.org/10.1155/2018/7515860

Bird, S., Klein, E., & Loper, E. (2009). Natural Language Processing with Python: Analyzing Text with the Natural Language Toolkit. O’Reilly Media.

Birjali, M., Kasri, M., & Beni-Hssane, A. (2021). A Comprehensive Survey on Sentiment Analysis: Approaches, Challenges and Trends. Knowledge-Based Systems, 226, 107-134. https://doi.org/10.1016/j.knosys.2021.107134. DOI: https://doi.org/10.1016/j.knosys.2021.107134

Bonta, V., Kumaresh, N., & Janardhan, N. (2019). A Comprehensive Study on Lexicon Based Approaches for Sentiment Analysis. Asian Journal of Computer Science and Technology, 8(S2), 1-6. https://doi.org/10.51983/ajcst-2019.8.s2.2037. DOI: https://doi.org/10.51983/ajcst-2019.8.S2.2037

Bunnoon, P., Thongtang, L., Madsa, T., & Suntiniyompakdee, A. (2021). Satisfaction and Behavior of Foreign Tourists during the Vegetarian Festival in Food Routes of Chue-Chang Community, Tourist Attractions at Hat Yai District in Songkhla Province. Parichart Journal, 34(1), 42–58.

Camilleri, M. A., & Troise, C. (2023). Chatbot Recommender Systems in Tourism: A Systematic Review and A Benefit-Cost Analysis [Conference session]. 8th International Conference on Machine Learning Technologies, Stockholm, Sweden. https://doi.org/10.1145/3589883.3589906 DOI: https://doi.org/10.1145/3589883.3589906

Casillano, N. F. B. (2022). Discovering Sentiments and Latent Themes in the Views of Faculty Members towards the Shift from Conventional to Online Teaching Using VADER and Latent Dirichlet Allocation. International Journal of Information and Education Technology, 12(4), 290-298. DOI: https://doi.org/10.18178/ijiet.2022.12.4.1617

Centers for Disease Control and Prevention. (2023). CDC Museum COVID-19 Timeline. https://www.cdc.gov/museum/timeline/covid19.html

Christakis, N. A., & Fowler, J. H. (2009). Connected: The Surprising Power of Our Social Networks and How They Shape Our Lives. Little, Brown Spark.

Elsenbroich, C., & Gilbert, N. (2014). Modeling Norms. Springer. DOI: https://doi.org/10.1007/978-94-007-7052-2

Feizollah, A., Mostafa, M. M., Sulaiman, A., Zakaria, Z., & Firdaus, A. (2021) Exploring Halal Tourism Tweets on Social Media. Journal of Big Data, 8, 72. https://doi.org/10.1186/s40537-021-00463-5 DOI: https://doi.org/10.1186/s40537-021-00463-5

Gadamshetti, S., Deepak, G., Santhanavijayan, A., & Venugopal, K. R. (2022). RDRLLJ: Integrating Deep Learning Approach with Latent Semantic Analysis for Document Retrieval. In N. R. Shetty, L. M. Patnaik, H. C. Nagaraj, P. N. Hamsavath, & N. Nalini, (Eds.), Emerging Research in Computing, Information, Communication and Applications. Lecture Notes in Electrical Engineering, vol 790. Springer, Singapore. https://doi.org/10.1007/978-981-16-1342-5_79 DOI: https://doi.org/10.1007/978-981-16-1342-5_79

Ge, J., Vazquez, M. A., & Gretzel, U. (2018). Sentiment Analysis: A Review. In M. Sigala, & U. Gretzel (Eds.), Advances in Social Media for Travel, Tourism and Hospitality. Routledge. DOI: https://doi.org/10.4324/9781315565736-21

George, M. I. N. O., Soundarabai, P. B. & Krishnamurthi, K. (2017). Impact of Topic Modeling Methods and Text Classification Techniques in Text Mining: A Survey. International Journal of Advances in Electronics and Computer Science, 4(3), 72-77.

Hutto, C. J., & Gilbert, E. E. (2014). VADER: A Parsimonious Rule-based Model for Sentiment Analysis of Social Media Text [Conference session]. 8th International Conference on Weblogs and Social Media (ICWSM-14), Ann Arbor, MI. DOI: https://doi.org/10.1609/icwsm.v8i1.14550

Isoaho, K., Gritsenko, D., & Mäkelä, E. (2021). Topic Modeling and Text Analysis for Qualitative Policy Research. Policy Studies Journal, 49(1), 300-324. https://doi.org/10.1111/psj.12343 DOI: https://doi.org/10.1111/psj.12343

Jeong, B., Yoon, J., & Lee, J. M. (2019). Social Media Mining for Product Planning: A Product Opportunity Mining Approach based on Topic Modeling and Sentiment Analysis. International Journal of Information Management, 48, 280-290. https://doi.org/j.ijinfomgt.2017.09.009 DOI: https://doi.org/10.1016/j.ijinfomgt.2017.09.009

JustAnotherArchivist. (2022). Snscrape: A social networking service scraper in Python. https://github.com/JustAnotherArchivist/snscrape

Kemp, S. (2023). Digital 2023: Global Overview Report. Datareportal. https://datareportal.com/reports/digital-2023-global-overview-report/

Khan, A. A., Newn, J., Kelly, R. M., Srivastava, N., Bailey, J., & Velloso, E. (2021). GAVIN: Gaze-Assisted Voice-based Implicit Note-Taking. ACM Transactions on Computer-Human Interaction (TOCHI), 28(4), 1-32. https://doi.org/10.1145/3453988 DOI: https://doi.org/10.1145/3453988

Kherwa, P., & Bansal, P. (2019). Topic Modeling: A Comprehensive Review. EAI Endorsed Transactions on Scalable Information Systems, 7(24), 1-16. http://dx.doi.org/10.4108/eai.13-7-2018.159623 DOI: https://doi.org/10.4108/eai.13-7-2018.159623

Liang, S., Jin, J., Ren, J., Du, W., & Qu, S. (2023). An Improved Dual-Channel Deep Q-Network Model for Tourism Recommendation. Big Data, 11(4), 268-281. https://doi.org/10.1089/big.2021.0353 DOI: https://doi.org/10.1089/big.2021.0353

Lwin, M. O., Lu, J., Sheldenkar, A., Schulz, P. J., Shin, W., Gupta, R., & Yang, Y. (2020). Global Sentiments Surrounding the COVID-19 Pandemic on Twitter: Analysis of Twitter Trends. JMIR Public Health and Surveillance, 6(2), 1-4. DOI: https://doi.org/10.2196/19447

Martín, C. A., Torres, J. M., Aguilar, R. M., & Diaz, S. (2018). Using Deep Learning to Predict Sentiments: Case Study in Tourism. Complexity. https://doi.org/10.1155/2018/7408431 DOI: https://doi.org/10.1155/2018/7408431

Mishra, R. K., Urolagin, S., Jothi, J. A. A., Neogi, A. S., & Nawaz, N. (2021). Deep Learning-based Sentiment Analysis and Topic Modeling on Tourism During Covid-19 Pandemic. Frontiers in Computer Science, 3, 1-14. https://doi.org/10.3389/fcomp.2021.775368 DOI: https://doi.org/10.3389/fcomp.2021.775368

Mujahid, M., Lee, E., Rustam, F., Washington, P. B., Ullah, S., Reshi, A. A., & Ashraf, I. (2021). Sentiment Analysis and Topic Modeling on Tweets about Online Education during COVID-19. Applied Sciences (Switzerland), 11(18), 1-25. https://doi.org/10.3390/app11188438 DOI: https://doi.org/10.3390/app11188438

Németh, R., & Koltai, J. (2023). Natural Language Processing: The Integration of A New Methodological Paradigm into Sociology. Intersections. East European Journal of Society and Politics, 9(1), 5–22. https://doi.org/10.17356/ieejsp.v9i1.871 DOI: https://doi.org/10.17356/ieejsp.v9i1.871

Neogi, P. P. G., Das, A. K., Goswami, S., & Mustafi, J. (2020). Topic Modeling for Text Classification. In J. K. Mandal & D. Bhattacharya (Eds.), Emerging Technology in Modelling and Graphics. Springer. DOI: https://doi.org/10.1007/978-981-13-7403-6_36

Pano, T., & Kashef, R. (2020). A Complete VADER-Based Sentiment Analysis of Bitcoin (BTC) Tweets during the Era of COVID-19. Big Data and Cognitive Computing, 4(33). https://doi.org/10.3390/bdcc4040033 DOI: https://doi.org/10.3390/bdcc4040033

Park, J. H., Lee, C., Yoo, C., & Nam, Y. (2016). An Analysis of the Utilization of Facebook by Local Korean Governments for Tourism Development and the Network of Smart Tourism Ecosystem. International Journal of Information Management, 36(6), 1320-1327. https://doi.org/10.1016/J.IJINFOMGT.2016.05.027 DOI: https://doi.org/10.1016/j.ijinfomgt.2016.05.027

Kong, J. T. H., Juwono, F. H., Ngu, I. Y., Nugraha, I. G. D., Maraden, Y., & Wong, W. K. (2023). A Mixed Malay–English Language COVID-19 Twitter Dataset: A Sentiment Analysis. Big Data and Cognitive Computing, 7(2), 61. https://doi.org/10.3390/bdcc7020061 DOI: https://doi.org/10.3390/bdcc7020061

Praprom, C., & Laipaporn, J. (2021). The Intervention Analysis of the Interrupted Incidents’ Impacts on Malaysian Tourist Arrivals to Songkhla Province in Thailand. Journal of Environmental Management and Tourism, 12(6), 1513-1522. https://doi.org/10.14505//jemt.v12.6(54).08 DOI: https://doi.org/10.14505//jemt.v12.6(54).08

Rehurek, R., & Sojka, P. (2010). Software Framework for Topic Modeling with Large Corpora [Conference session]. The LREC 2010 Workshop on New Challenges for NLP Frameworks, Valletta, Malta. https://radimrehurek.com/lrec2010_final.pdf

Salloum, S. A., Khan, R., & Shaalan, K. (2020). A Survey of Semantic Analysis Approaches. In A. E. Hassanien, A. Azar, T. Gaber, D. Oliva, & F. Tolba (Eds.), Proceedings of the International Conference on Artificial Intelligence and Computer Vision (AICV2020). AICV 2020. Advances in Intelligent Systems and Computing, vol 1153. Springer, Cham. https://doi.org/10.1007/978-3-030-44289-7_6 DOI: https://doi.org/10.1007/978-3-030-44289-7_6

Sharma, H., Jindal, H., & Devi, B. (2023). Advancements in Natural Language Processing: Techniques and Applications [Conference session]. International Conference on Advanced Computing and Communication Technologies, ICACCTech 2023. https://doi.org/10.1109/ICACCTech61146.2023.00019 DOI: https://doi.org/10.1109/ICACCTech61146.2023.00019

Srivastav, A., Khan, H., & Mishra, A. K. (2020). Advances in Computational Linguistics and Text Processing Frameworks. In G. Loveleen, A. Solanki, V. Jain, & K. Deepak (Eds.), Handbook of Research on Engineering Innovations and Technology Management in Organizations. IGI Global. DOI: https://doi.org/10.4018/978-1-7998-2772-6.ch012

Statista. (2022). Number of Twitter Users Worldwide From 2019 To 2024. https://www.statista.com/statistics/303681/twitter-users-worldwide/

Stella, M., Restocchi, V., & De Deyne, S. (2020). #lockdown: Network-Enhanced Emotional Profiling in the Time of COVID-19. Big Data and Cognitive Computing, 4(2), 14. https://doi.org/10.3390/bdcc4020014 DOI: https://doi.org/10.3390/bdcc4020014

Tabassum, S., Pereira, F. S. F., Fernandes, S., & Gama, J. (2018). Social Network Analysis: An Overview. WIREs Data Mining Knowledge Discovery, 8(5), 1-30. https://doi.org/10.1002/widm.1256 DOI: https://doi.org/10.1002/widm.1256

Tepanon, Y., Saiprasert, W., & Tavitiyaman, P. (2021). Destination Images of Thailand: Current and Future Development. In J. Zhao, L. Ron & X. Li (Eds.), The Hospitality and Tourism Industry in ASEAN and East Asian Destinations: New Growth, Trends, and Developments. Apple Academic Press. https://doi.org/10.1201/9781003082200 DOI: https://doi.org/10.1201/9781003082200

Trajkova, M., lhakamy, A., Cafaro, F., Vedak, S., Mallappa, R., & Kankara, S. R. (2020). Exploring Casual COVID-19 Data Visualizations on Twitter: Topics and Challenges. Informatics, 7(3), 1-22. DOI: https://doi.org/10.3390/informatics7030035

Vajpai, G. N., & Pattanaik, D. (2022). Analyzing Visitors’ Review of Homestays Located in Nature-Based Settings: An NLP Based Approach. NMIMS Management Review, 30(2), 8-17. https://doi.org/10.53908/NMMR.300201 DOI: https://doi.org/10.53908/NMMR.300201

Valeri, M., & Baggio, R. (2021). Social Network Analysis: Organizational Implications in Tourism Management. International Journal of Organizational Analysis, 29(2), 342-353. https://doi.org/10.1108/IJOA-12-2019-1971 DOI: https://doi.org/10.1108/IJOA-12-2019-1971

Wang, Z., Zhang, G., Yang, K., Shi, N., Zhou, W., Hao, S., Xiong, G., Li, Y., Sim, M., Chen, X., Zhu, Q., Yang, Z., Nik, A., Liu, Q., Lin, C., Wang, S., Liu, R., Chen, W., Xu, K., Liu, D., Guo, Y., & Fu, J. (2023). Interactive Natural Language Processing. ArXiv. https://doi.org/10.48550/arXiv.2305.13246

Wolpe, Z., & Waal, A. D. (2019). Autoencoding variational Bayes for Latent Dirichlet Allocation [Conference session]. South African Forum for Artificial Intelligence Research (FAIR 2019), Cape Town, South Africa.

Wongmonta, S. (2021). Post-COVID 19 Tourism Recovery and Resilience: Thailand Context. International Journal of Multidisciplinary in Management and Tourism, 5(2), 137–148. https://doi.org/10.14456/ijmmt.2021.12

World Health Organization. (2020). Archived: WHO Timeline-COVID-19. https://www.who.int/news/item/27-04-2020-who-timeline---covid-19

Wun’Gaeo, C., & Wun’Gaeo, S. (2021). Thailand and Covid-19: Institutions and Social Dynamics from Below. In J. Nederveen Pieterse, H. Lim, & H. Khondker (Eds.), Covid-19 and Governance: Crisis Reveals. Routledge. https://doi.org/10.4324/9781003154037 DOI: https://doi.org/10.4324/9781003154037

Yu, C., Zhu, X., Feng, B., Cai, L., & An, L. (2019). Sentiment Analysis of Japanese Tourism Online Reviews. Journal of Data and Information Science, 4(1), 89-113. https://doi.org/10.2478/jdis-2019-0005 DOI: https://doi.org/10.2478/jdis-2019-0005

Zimbra, D., Abbasi, A., Zeng, D., & Chen, H. (2018). The State-of-the-Art in Twitter Sentiment Analysis: A Review and Benchmark Evaluation. ACM Transactions on Management Information Systems, 9(2), 1-29. https://doi.org/10.1145/3185045 DOI: https://doi.org/10.1145/3185045

Downloads

Published

2024-09-18

Issue

Section

Research Articles