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Abstract

This research demonstrates the calculation of an estimated solution for the membrane motion
equation with given initial and boundary conditions using the 3D reduced differential transformation method
(RDTM) obtained from the normal differential transformation (DTM). By comparing the analytical solution
and the approximate solution obtained from RDTM, it is found that the approximate error is considerably
small. Therefore, the RDTM is effective in solving the equation of membrane motion. In addition, adding a
damping term, an external force term as well as both damping and external force terms result in a decrease
in the approximate solution amplitude for each time. In conclusion, the RDTM is the method with less
complexity compared to the analytical method, so that it is possible to find an approximate solution in
terms of the polynomials of t conveniently.
Keywords: Differential Transformation Method, Reduced Differential Transformation Method, The equation
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ﬁfﬂ%’wmmuwmmuﬁﬁ]wﬁ'ﬂﬁ]ﬂiﬂﬂgmiajﬁi’m 9 ﬁLﬁmﬁﬁﬂuﬁiimwa‘lmﬂmﬂsi’fmmiﬁ]’mawwm 9 LU
Amnssaneiesna Imnssallwih Imnssugaamnis nasuLazATUImME Haymivanidulnglasunmsdnuilag
Iduuudnasmuadamansuraguuuulagldaunisiisouiusandey (Ordinary Differential Equation : ODE) wa
aun19.BsyWusEey (Partial Differential Equation : PDE) Haymuvanisnudessimamuainasuazinisudlad
gndliinzduiimamveamasddwsgivionmsuidymilnenswnaasUszanme

nsuUauBseyitus(Differential Transformation Method : DTM) ifuia3esilofisiuszansamanndildly
mATednwnieuAaunsBseyusansiay(ODE) uaraun1sideeyiudios(PDE) nMsAnwinisulandseyius
(DTM) Tuagifumanszansveseynsumdiaosonneigs Billuaiowledmiunsufaunmsdouiusasiydaudu
wazlal@aLdu Kothandapani, J. & Bharathi, V. (2016), Singh, J., Rashidi, M., Sushila, M.& Kumar, D. (2017),
Zedan, A& AliAlghamdi, M. (2012) wagdmiunisuiaunadeyiusdesaosaraufinludymidaduias g
urtaes F3n1sutasdseyius (OTM) annsoldlumsufaumadsoyiusaneldifouluSudunazveuianiiding
Fouludadunaglilidadumelutasdoianaaiivonsuls Mirzaee, F.& Yari, MK. (2015)

miam%’jumil,l,ﬂaﬂL%ﬁaﬁgﬁuﬁf(Reduced Differential Transformation Method : RDTM) 18u38nnswileitle
Ussgndronnmaudandeeyiudifietisantuneulunsmdineuliinetuldegnediussaniam mmsanduisnng
wandsoyiusuuy 2 ffuars SAlAHUssgndlunsmaanasvesaumdeuiusdenuuubaduuar iidadu
Yildiray, K., lbrahim, C.& Ayse Betul, K. (2011)1% RDTM L‘ﬁamwamaaﬁummi Sine-Gordon %ﬂa’]mm’%’ﬂwama
aglugUaEey soun Vineet, K., Mukesh, K.& Chaurasia, R.K. (2014) lald ROTMIu 2 ifi uay 3 SadmSuaunis
Hyperbolic telegraph Yildiray, K.& Galip, O. (2010) 19RDTM Tunsnnataaeaunis The generalized Korteweg
- de Vries ¥ MRDTM QﬂiﬁLLWi’ﬁmau’mﬁu Saravanan, A.& Magesh, N. (2013) 33"RDTM uLUSuLisUNaLaaY
U35 the domain decomposition d1113Ua1N"15 The Newell-Whitehead-Segel #1 RDTM ansnsaufideynlénty
Hamlsidadulaglidiszavsngun Mohammed, O. Al-Anr. (2014) éUssgnd ROTM Lilevnkalaasasaunis
aunusdaelii¥adu Vineet, K. Mukesh, K. & Kumar, S. (2014), Vineet, K. Mishra, N. Kumar, S. Kumar, B. &
Mukesh, K. (2014), Taghavi, A. Babaei, A. & Mohammadpour, A. (2015), Mohamed, S. & Khaled, A. (2017),
Elsaid, A. & Helal, S.M. (2020), Timilehin, KA. & Adedapo, C.L. (2021) 1#14 ROTM Tu 2 §if way 3 ffdie
‘Uismmﬂ"]ﬁwﬁ'auimémé’fuuaxﬂzymﬁwaw‘ﬁﬁmaLaaﬁagiugmwmaww TagR1suandulszansvsy
lafFumyunailagldnatideunthuszanasmwaidal msdssanaedeisiteissansameganniuaunsi
BBUENYANTINVRITIUMATUFUL LA LA

TumsﬁﬂmmmﬂaaL%qauﬁ’uﬁ‘maamiﬁummmuL‘Uiu Mansilp, K& Kasernsuwan, J. (2019) Faadl
dnwarmsdumilountinass natnasiildiflewIsuiisuiunaiaasiingiz (ana lytical solution) FaufndrAy
RawanatiossnndehlDTM WuBmsfmngalunauanssyszanaeusinsnsimuasaunisegluguiuy
Afudounasiidrnunslidydnvalnauaninn silsiresfiamesiviglumsdundisauionain ma;pfaamlm
14 ROTM Fafuismsiinaglimamuainssiidudoulihet uwaninauianantosiia

YBULVAUIIY
1. aumsmsmaaumaammusu (The equatlon of motion of a membrane)
ﬁllﬂ'ﬁﬂ'ﬁl,ﬂa@uﬂﬁ’mLLU’J%’JN%@Q?\’WHU%@QLN@JL‘US‘L«! Rao, S. (2004) ﬂa

oO’w 0w o*w
Pl > /(%30 =p0ny) = (1)
We f(x,y,1) Ao wasluiieany z (Wsanieuen)

D A ANUULAIAATIIALIIAY (HAYDIAITHLAULTIRAZAIUNUIVDUUULUTY)
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o(x,y) fio tindenilmheitui
W f(x,p,t)=0,P=1uaz p(x,y)=1 unuelu (1)
o’'w ’'w Ow
2 + 2 = 2
ox~ oy ot
FouluSudu Rao, S. (2004) fe

w(x, y,0) =Sinﬂsin%,03xﬁ a,0<y<bh,
a

%V(x,y,O):O,OSxSa,Ogygb,

dlodmualia = luazb =1

YouwnioulureIaNsNITIuTeLLNUSURe

w(x,0,1)=0,0<x <1,

w(0,,6)=0,0<y <1,

w(x,1,1)=0,0<x <1,

wl,»,t)=0,0<y<LteR (3)

2. WawasLAIzni (Analytical solution)
- < 2 . ) ow .
910 Rao, S. (2004) #9584 (2) ReulvuFudu w(x, y,0) =sin zxsin 7y way v (x,»,0) =008
t

PouASUFIL3) Mansilp, K.& Kasemsuwan, J. (2019) \51aglanataagiiasnzit (analytical solution)
Ch)

w(x, y,t) =sin zxsin 7y cos 27t (@)

ad A %
NOEHNNYIVI
1. n1sudauBeaywusa1uli@ (Three-Dimensional Differential Transform Method) Mansilp, K&
Kasemsuwan, J. (2019)
feuiugiuresnisuuaadeeyiusae
i 1 nswasdaeyiusaudfvesilaidu wix, y,t) mvualag

o0 o0 o0
_ k h,m (5)
W('xay’t)_ ZZW(kah:m)x y t
k=0 h=0 m=0
Henui 2 NMsuanniudeyiusaulAve AU Wk, h,m)}” vualag
2 k,h,m=0

k+h+m
Wiy =L 270
K\him!  ax*oy"or”

(6)

|(0,0,0)

3. miaﬂ%%umiwdau%\iaqﬁué (Reduced Differential Transform Method) Mohamed, S., & Khaled,
A. (2017)
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fgnuuguresnisantunisulaadeeuiius lneiasaniladuauimuds wx, y,¢) Jeueglugunanu
vaaflandudUsihetauitendu wu wix, y,1) = f(x)h(y)g(t) Mnauaudiniseiasdoyiusaunsowans

logail

w(x, y,t) = ZF(z)x ](EH( j)x’j[iG(k)xkj
—ZW@wt

e W, (x,y)gnisunin t-dimensional spectrum function vasituguiignuvesnisandunisuiaiia

oyusdail
Hguh 3 dilaidu w(x, y,1) Teszvenuseilloniaives ¢ Meldlawuiilsiatsan fmuslay

k

w(x, y, t)} ®)

t=0

1| o
W.(x,y)= k'{ak

W9 t-dimensional spectrum function W, (x, y) fis nmsuuasitandu w(x, y,£) wnuilandusudy uag
W, (x, y) vanede fladduiUaateeyius

i 4 nMsudamniudeunus W, (x, y) mvualay

w(x, y,t) = i W, (x, y)t*

k=0

FWENN13(8) waz(9) azle

w(x, y,t) = i {akw(xy’t)} t' (10)

k!
i k =0

NAUN15(10) MIandunsiUasdseyiusazanunsaleuilaidueglugUaynsumes

M159911 MsandunsiugiudmsunisantunsuUaddaeyivus(RDTM)

gﬂLLUUWQﬁ%uﬁugm EULL‘U‘Uﬂ”Iiaﬂ‘f'?umiLLUaQL%QaHﬂJué(RDTM)

u(x,t) 1 o*

k'a k W( y’t)L =0
u(x,t) =wx,t) £v(x,t) U,(x)=W,(x)£V,(x)
u(x,t) =aw(x,t) U,(x)=alW, (x) dlo o Wurmas
u(x,t)=x"t" U, () =x"8(k—n),6(k) ={ 5%
u(x,t) =x"t"w(x, y,t) U,(x)=x"W(k—n)
u(x,t) =wx,t)v(x,t) k k

U,(x) = YW, (W, (x) = DV (W, (x)

r=0 r=0
o k +7r

)= Tt Uy =+ 1.k, 0 =
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sUnuUlaiduiugu sULUUNMIARTUNTIUANTeYIRUS(RDTM)

u(x,t) = % w(x,1)

U(x)—6W<x>

u(x,) =§w(x, 0

Uy (%)= —5 W, (x)

A5N15AHUIUIY

Tudutliansnisuszanaaraaeme ROTM Tuguhuureen1smAaun1sn1sinaouivedsiiusy,
AUNTSARNIUNNTNUI AUNISARNIUNTAUINULSINGUBN WaZANNISNRLSINEUBNNINTEYN

A128199 3.1

fTNENNNTNNTAADUTIU ILLUTY Rao, S. (2004)
(11)
oO’w  o'w  *w
> T a2 T A
ot ox~ Oy

WauluSusu

W(xayao)=Sinﬂsin%,0£x£l,0£yél, 1
a
%(x,y,o)zo,ogxgl,OSyg

YBULIALSUAY
w(x,0,1)=0,0<x <1,

w(0,,6)=0,0<y <1,
w(x,1,t)=0,0<x <1,

wlLy,t)=0,0<y<LterR (13)

Wiguiieu (11) lugduuu RDTM A5 1 azld

82 o*
(k+1)(k+2)W,,(x, ) = W  (x, y)+ W, (x, ) (14)
y
0 (12) 2gla
W, =sinzxsinzy, W, =0 (15)

1 (15) uunuen (1) e k = 0 agla
2 2

(0+1)(0+ 2, (x, ) ; W, (x. ) + i W, (x. )

2 2
W, (x, ) = 9 (sinmrsinmy) + 2 (sin wxsin 7y)
ox oy
W,(x,y) = (—z*)(sin Zxsin 7 y).

wnurk =Lk=2,k=3,...azls
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W,(x,y)=0,
4

W, (x.) = € )sin xsin zy)

Wi(x,y)=0,...
Tdnsudamniudseyiusaie ROTM ves W, (x, y) isnaelanamasnall

4 6
w(x, ,1) ={1—7z2t2+%t4+%t6+..}(Sinﬁxsinﬁy) (16)

f1981991 3.2 NATUIENNITNISIARDUNVOUNIUTUATINAUNITUL(With damping term)

Fw_dw dw_ow 1)
or? 8x2 oy’ o
Wisuiiteu (17) Tuguiuuromv :1nmsnedt 1 aglel
(k+1)(k+2)W, ,(x, )
82 0’
=7 W (x, y)+ W (x, y) = (k+ DWW, (x, ») (18)
y
1 (15) e (18) dlo k =0,k =1,k =2,k =3,...9514
W,(x,y) = (—~*)(sin zxsin zy),
2
W (x,9) = (5 Ysin zxsin ),
W,(x,y)=Q2r" - z*)(sin zxsin zy),
7~
W.(x, — ——)(sinzxsin
s(xy) = (60 15)( Y)sees y
Tgn1sudamniuBeeyiusaieRDTM vae W, (x, y)s1aglinaasdiail
2 4 2
X, y,t 1+ (-22) e+ 2 e 2
+ ”—2+”—4 £ +...| (sinzxsinzy) (19)
60 15 4

Aad19¥ 3.3 ﬁmimammimsmﬁauﬁmaaLmJLUiuﬁﬁwaﬂmwmaﬁULLsﬂmauaﬂmmw‘f’](w)

(with damping term and external force)

o’w 82w o’w 5 8w
or’ 8x2 oy’ 81‘
Wisuiiteu (20) TuguuuySromm 91nesnadt 1 azlél

(k+D(k+2)W, ., (x, )

(20)
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0’ o
=yWk(x,y)+§M(x,y)—2(k+1)%+l(x,y)+Wk(x,y) (21)

¥ (15) e 1) dlok =0,k =1,k =2,k =3,...9¢14

W,(x,y) = (-x" +1)(sin zxsin 7 y),

2
i(0x,) = (o = )sin xsin ),
o 1. .

W, (x,y)=(———+-)(Ssinzxsinrxzy),
2 (%) (6 2 8)( »)
270 1. )
W.(x,y)= +—)(sinzzxsin y),...
5(x, ) (15 3O)( )

[

Ignsudasmniudseyiusaeroim ves W, (x, y)snaglinamaydail

2 4 2
x,vt) =| 1+(-22) 2+ Z |8+ 22 -2 |

A AR . .
+| —+— |’ +...| (sinzxsin T (22)
(60 15J ( Y)

o ' § a a - A o 2
fire1993.4 WANTAUIFUNTITNITLARDUNVDIUNLUITUNULINNYUDANINTENT (W )

(with external force)

(23)
’*w o'w Pw
T T a2 T W
ot ox~ 0oy
Wiguiie (23) luguuuurom ne5T 1 agld
(k+D)(k+2)W,.,(x,y)
62 82 k
=W, (x5, )+ =W, (x5, )= D W.(x, Y)W,_,(x,) (2)
ax ay r=0
11 (15) wunuen (24) dlek =0,k =1,k =2,k =3,...2¢l¢
sin zxsin zy) (27> +sin zxsin 7z
W (o, y):{( ) y)}
2
I/V3 (xa y) =0,
sin(;zx)3 sin(7ry)3 7’ sin(7ry)2 +7° sin(;zx)2
VV4(-x: y) = 12 - 12

2 6

N 72'2sin(ﬂx)zsin(ﬂy)z]+[7z'4sin(7zx)sin(7z'y)}

Wi(x,y)=0,...

TgnnsuUaaniudeeuinusmeRDTM 281 W, (x, y)5azlinamaydiail
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- - sin zzxsin zy)(27* +sin zxsin
w(x, y,t) =sinzxsinzy— ( ) ) 2

2
s sin(mc)3 sin(7zy)3 ~ 7’ sin(izy)2+7z2 sin(mc)2
12 12
.\ 7 sin(7zx)” sin(7y)’ .\ 7' sin (7x)sin(7zy) p
2 6
+... (25)

NAN15398

seoldfiunisuanmadonsimainiaedeit 3.1-3.4 Tmlugﬂﬁ 1 azidunisuananalSeuiisunalaas
34A5199 (analytical solution) YeeELN1SNTLATOUTIVBAUNIUTI(E) FUNARAEUSTUAGI8RDTM 9nF08137
1 ziulansiuiuadnned uanain MsuEaRagLUUUsEINUA1PERDTM aunsavralaaslng1ausiug
Tnouansalunsned 2

—t=0.0 (Analytical)
—1=0.1 {Analytical)
~—t=0.2 {Analytical)
0.5 —1=0.3 (Analytical)
—t=0.4 {Analytical)
—1=0.5 {Analytical)
—t=0.6 {Analytical)
-t=0.0 (RD'ITM)
“t=0.1 (RDTM)
“t=0.2 (RDTM)
-t=0.3 (RDTM)
-t=0.4 (RDTM)
-1=0.5 (RDTM)

"o 02 04 00 0.8 | 06 RDTY)
Position (x)

Displacement (w)
=

UM 1 n9vluannsiSeuiieuseninaueunagaveainsminalaasdias et unnHaRag UTEMA
v aa
A7835 RDTM

MSUTEUNUAHALRALAIYRDTM YBIAUNITNITLARDUNVDIULLUSUNINDUNTMUISIUAIDEIN 3.2 wananaly
SUR 2 kagnN15UseaNuAINaLRagAIgRDTM @UN15N15LARBUNVDIULLUSUNINIUNSIUIAULTINEUBNLINTEYIN

U

(w)lushegnai 3.3 uanssaluguil 3 wuh deirdiumansmbafistusesiiussnisueninnagyi asviliuey

WAPAYRINTMAnA WS UIBUINTUT 2 Uar3Un 3 uaslansAlumsem 3

Y

] -
—t=0.0
—1=0.1 t=0.3
~08 102
z —1=03
= —=0.4
506 —10.5
§ —t=0.6
2o4l
[
o2t
0 . . . .
0 0.2 0.4 0.6 0.8 1
Position (x)

UM 2 n5mlaun1sn1siAdouve LN TUNINAtnMUIeseIs RDTM
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1=0.3

—=0.0
—1=0.1
=02
—t=03
—=04
—1=0.5
—=0.6

Displacement (w)

0 0.2 0.4 0.6 0.8 1
Position (x)

Ul 3 nemlaunsnisifeuiiveasmiusuiiinansmisiuussnisuenuinsesih (w) dae RDTM

WL iiunauniiunsInIeuenuINseyin (w2 ) wiiliiiinadnmsmhuanduiiegin 3.4 nMsuanwmavansmisy

1 4 wouNFIAILANINIINTMAUNITNITIATOUTIVEAUNUTUNTUTINBUBNUINTEYI UL 3.1 UavlansAlly
M15199 4

r — 00 1=0.3
—1=0.1
—1=02
—1=03
—=0.4
—1=0.5
—=0.6

Displacement (w)

=4
i

0 0.2 04 0.6 0.3 1
Position (x)

UM 4 n519laun1IN1SIAGe U LUNIUTUNTLSINgUaNUINTEYN (w2 ) e RDTM

A15197 2 ANYDINALRAETLATIZN (analytical solution), NaLRABUITUIUAIIERDTM KAy AIAILARIALARDY
o x=0.25,y=0.25

time(sec) | wW(analytic)) W(RDTM) |w(exact) —-w(RDTM )|
t=0.0 0.500000 0.500000 0.000000
t=0.1 0.451458 0.451458 0.000000
t=0.2 0.315259 0.315259 0.000000
t=0.3 0.117846 0.117849 0.000002
t=0.4 -0.102448 -0.102405 0.000042
t=0.5 -0.302850 -0.302461 0.000389
t=0.6 -0.444449 -0.442081 0.002367
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A15197 3 AvBsHALRaEUTTINAATRDTM, RDTM with damping, RDTM with damping + external force wazn
ANUAaTIALAEEY LW x =0.25,y=0.25

time(sec) | WRDTM) w(damping) | w(damping +ext.) ||[W(RDTM) W(RDTM)
—w(damping)|||-w(damping
+ext.)
t=0.0 0.500000 0.500000 0.500000 0.000000 0.000000
t=0.1 0.451458 0.456554 0.456856 0.000509 0.000539
1=0.2 0.315259 0.354950 0.347160 0.039691 0.031901
t=0.3 0.117849 0.246386 0.213073 0.128537 0.095224
t=0.4 -0.102405 0.184403 0.117779 0.286808 0.220184
t=0.5 -0.302461 0.210517 0.153754 0.512978 0.456215
1=0.6 -0.442081 0.335447 0.455315 0.777528 0.897396

A19199 4 AveINALRABUITINAT RDTM, RDTM with external force LAZAIANAAALAADY LilD
x=0.25,y=0.25

time(sec) | W(RDTM) w(ext.(w?)) ‘W( RDTM ) —w(ext.(w* ))‘
£=0.0 0.500000 0.500000 0.000000
t=0.1 0.451458 0.456856 0.005398
£=0.2 0.315259 0.347160 0.031901
t=0.3 0.117849 0.213073 0.012881
t=0.4 -0.102405 0.117779 0.220184
t=0.5 -0.302461 0.153754 0.456215
t=0.6 -0.442081 0.455315 0.897396
A3UNANI33Y

dlofiansannsmluazA191nma1319 151U ROTM SlszansnmlunisminaiaasUssanamnvedaunisnis
indouivesmusUldosuius @ TuiisuiunsmraRasis s iudmanunaaAaeutiosun fuile
farsannsiitinatnisuie wasnatnsmiaeTuLsIneueNIENUI weufignuensvanadegauiuladn wiiile
S RLNTITLsIeueneg R waunAAveINTMTAARANTUTY
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