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Abstract

In this research, a three-parameter Lindley distribution is improved by truncating from both left and
right sides. The truncated three-parameter Lindley distribution is proposed about the probability density
function, cumulative distribution function, survival function, hazard function, moments and parameter
estimation. The developed distribution and the baseline distribution are applied 4 real lifetime datasets and are
compared the model performances. The numerical experiments reveal that the truncated three-parameter
Lindley distribution gives the lowest values of the negative log-likelihood ( -Log( L) ) and the Akaike
information criterion (AIC). Moreover, the developed distribution provides a large p-values in Kolmogorov-

Smirnov test (K-S test).
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1. Introduction

Lindley distribution, proposed by Lindley [1], is one way of modelling to explain lifetime data in
term of system or mechanism. Lindley distribution is continuously developed to increase the model
performance, for example, Shanker and Mishra [2, 3] represented the probability density function (P.D.F)
and cumulative distribution function (C.D.F) of two-parameter and quasi two-parameter Lindley
distributions, respectively.

A three-parameter Lindley distribution (TLD), proposed by Shanker et al. [4], contains two-
parameter gamma distribution and one parameter exponential and Lindley distributions are specific case. It

has been applied for modelling lifetime data. The P.D.F and the C.D.F are given as

2
f(x;0,a,B)= (a+ pr)e ™, (1a)
al + p
opx | _
F(x;0,a,8)=1—|1+ P |, ox (1b)
O + [
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where x> 0,80 >0, >0 and O+ [ >0 . The P.D.F. and C.D.F. plots of the three-parameter

Lindley distribution for different values of @, @ and [ are represented in Fig. 1.
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Fig. 1 P.D.F and C.D.F plots of TLD for different values of parameters 6, a and 3

The three-parameter Lindley distribution is applied for some lifetime data, for example, Shanker et al. [4]
applied for the survival times of guinea pigs infected with virulent tubercle bacilli, AI-Omari et al. [5]
proposed using the three-parameter Lindley distribution for economic design of acceptance sampling plans
for truncated life tests.

Truncated distribution is one of the famous techniques to increase a robustness of an estimator from
a parent distribution. The truncated distribution on a smaller interval provides a new distribution than a
parent distribution. Johnson et al. [6] derived a truncated normal distribution from the standard normal
distribution. For others distributions, especially, lifetime distribution, there are many researchers proposed
truncated lifetime distributions. For example, Savenkov [7] proposed a truncated the Weibull distribution
which is to be utilized to evaluate the theoretical capacity factor of potential wind (or wave) energy. It was
found that a truncated form of Weibull distribution is used for modeling the effect in the cut-in wind speed
or cut-in wave height of a power generator. Aryuyuen [ 8] introduced a truncated two-parameter Lindley
distribution and its utilization. The truncated two-parameter Lindley distribution provides a reasonable and
better implementation of the real data. Zaninetti [9] applied a truncated two-parameter Lindley distribution
of the luminosity function of the Sloan Digital Sky Survey ( SDSS) galaxies and to the photometric
maximum of the 2MASS Redshift Survey (2MRS) galaxies.

To increase the robustness of the estimator, a truncated three-Lindley distribution is proposed in
this study. It is presented in term of probability density function, cumulative distribution function, survival

function (S(x)), hazard function (H(x)), parameter estimation and application for 4 lifetime data.

26



K. Yimnak and P. Meechobtham / Pathumwan Academic Journal, Vol. 11, No. 31, May - August 2021

2. Truncating Distribution

Let X e (— oo,oo), a continuous random variable, be a parent distribution with the parameter ©.
The P.D.F. and C.D.F of X have infinite support and are within [a,b] ,—0<a<x<b<ow.The P.D.Fof
the truncated distribution where —o0 < a < x < b < oois given as equation (2) [10]:

/(x;0)
F(b;0)-F(a;0)

t(x,0,a,b)= ;—o<a<x<b<oo, 2
((x);a<x<b

0 ; otherwise at(x|asxgb), f(X)ZO,forallx.

where f(x)z{
b
Since jt(x|a£x£b)dx,then,
H (a<x<b)de=——— 1 rix)d
({t x|a_x_ x—mif(x) X
:—F)[F(x)];z

——— | F(b)-F(a)|=1

o) F(a)[ (b)-F(a)]

The parent distribution can be truncated both left and right sides or be truncated only one side. In this study,
the three-parameter Lindley distribution is presented truncation for both sides that is called a doubly

truncated distribution.

3. Method

The three-parameter Lindley distribution is developed by truncation both left and right sides. The
P.D.F and C.D.F. of the developed distribution are shown in section 3.1 and 3.2. Then, its statistical
properties are presented in term of survival and hazard functions, moments and parameter estimation using

maximum likelihood estimation as shown in section 3.3 to 3.5, respectively.
3.1 The P.D.F of Truncated Three- Parameter Lindley Distribution (TTLD)
Let X~ TTLD (9,a,ﬁ,a,b) be distributed as the TTLD random variable with the parameter

0,a, [, aand b, the P.D.F is shown in equation (3).

0% (a + fx)e ™

<x<bh)=
((xja<x<b) (Ba+ p+ 6Ba)e™ —(Oa + p+6pb)e™®

3)
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and #(x)=0 otherwise.
Proof. Let X ~TLD (9, a,p ) and X be called the TTLD on interval [a, b] with parameter 8, and [
respectively. #( x|a < x <b) has the property as:

0% (a + fx)e ™ "
Oa + B+ 6fa)e™® — (0o + +6pb)e®

a

b b
jt(x|a£x£b)dx=j((

= ! ?02 (a+ pr)e "dx

(O 1+ O ™ o e e ™«
_ 1 b, o
- (6’a + 4+ eﬂa)e‘6’“ _(ga + B+ gﬂb)e—ab {10 (“ + ,Bx)e dx

: N
(«905 + [+ G,Ba)ef‘ga — (005 + B+ gﬂb)e—ab

Oor + f+ Op)e |

_(Ga+ p+Oaje”™ — (0o + f+0fbe™™ _
(O + p + OPa)e™ — (0o + 5+ Opb)e™®

3.2 The C.D.F of TTLD
The C.D.F of TTLD is given by equation (4).

(Ba+ p+6fa)e™ — (6o + f + Gfx )™
(Ba+ p+6pa)e™ — (o + +Opb)e™®

The P.D.F and C.D.F plots of TTLD are shown in Fig. 2. Based on a comparison of P.D.F plots in Fig. 1

“4)

T(x|a£x£b):

and Fig. 2, the TTLD gives a higher value of P.D.F than TLD for the same parameters &, and £.
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Fig. 2 P.D.F and C.D.F plots of TTLD on [1.0,5.0]
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3.3 Survival and hazard functions
S(x), a survival function, is the feasibility that a matter survives longer than time x. It is written as:
(Ba + p+ 6Bx)e™ " —(Oa + B+ Opb)e® )

(6o + p+ 6Ba)e™ — (6o + p + 6Bb)e™®

S(x)=P(X >0)=1-F(x

H(x), a hazard function, is the ratio of #(x) to S(x), given by
t(x 07 (a + fr)e "
L EI (o + ) - ©)
S(x)  (Oa+p+06Bx)e ™ —(0a+ B +0pb)e

The S(x) and H(x) plots of TTLD are shown in Fig. 3. Fig. 3 shows that the S(x) plots are decreasing. The

H(x) plots are similar to bathtub curve and it trends to increase.
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Fig. 3 S(x) and H(x) plots of TTLD on [1.0, 5.0]

3.4 Moments

Moments of the proposed distribution provide some characteristics of TTLD such as mean,
variance, skewness, kurtosis, etc. Some moments are shown through moments generating function that as:

(k)= E(x*)=Jx* £(x )dx.,

6’ b
(O + B+ OPa)e™ —(Ba + g+ Opb)e™® I
[%z(xke_gx)d(@x)+§

((a + fx)xFe )z’x,

(k)= E(Xk):
92 b k+1 —0x
(o + B+ 6Pa)e™ —(6a + B +6Bb)e™® £ (x € )7’(9)6)} - O

e "dx , the equation (7) is written as equation (8).

b
By using the gramma function /7~ (k,b) = x*
0
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w (k)= E(x*)

a

= 02 a ¢ k ,—0x ﬂ b k+1 —Ox
" (Ba+ fr0fa)e ™ —(0a+ p+opp)e ™ [ | (63 Jatox) + ped] ()" )d(gx)}

_ (@6l (k+1,b)- Ik + 1,a)]+ BT (k+2,b)- I"(k +2,a)]) ®)
(6a+ p+6Ba)e ™ —(6a+ p+0Bb) e ) 0"

E(X) and V(X) are revealed in equation (9) and (10).

(N w1\ (@Ol0(2.6)-(2,a)l+ BIr(3,6)-1(3,4))
w ()=Elx)- 0((6a+ p+0pa)e ™ —(0a+ p+0pb)e ") ®

(e o2 ) (@O (3.6) -3, a)l+ Al (4,b)-T(4,a))
(@)= °)- 0° (0o + -+ OBa)e ™™ —(0cc + p+0Bb)e ™)

V(X)=E(X’)-(E(X))’

_ (@1 G.0)-rG.a)+ Ar(0)-r(a)) [ (@dlr@.b)-realfAre.s)-re.a) ] (10)
0°(0cr+ p+0Ba)e™™ —(0a+ p+0Bb)e ™) | 0((6a+B+68a)e ™ —(6a+p+0pb)e )

3.5 Parameter Estimation

The parameter estimation of TTLD is answered using maximum likelihood estimation (MLE). Let

.....

X, )be a random sample with size n. X ~TTLD (9,0{, ﬂ,a,b) is independent and

identically distributed. The likelihood function of TTLD ( L( @|)~c )) is as equation (11),

2 —0x;
L(@ﬁ):A 0 (a+ﬁx[)e

- . 1
iz1 e (a0 + p+ pOa)—e " (al+ B+ pODb) (b

The log-likelihood function of X based on X is given as

log(L(e, 8,0,a,b%)) = LL(O[F),

92 n n
LL(OX)=nl + > (I + Bx;))- Ox;
(OF)=r Og[eea (@b + B+ pOa)-e? (a¢9+,8+/3¢9b)J Z,:( oglat fx.) Z}( %)
The MLEs of «, f and @ can be solved using equation (12), (13) and (14), respectively.
6LL(@|§) ~ i )i B n(@e‘“‘g B ee—ba)
oa (

12
N\a+px; ) (B+abd+poa)e ™ —(p+abd+ pOb)e™"° 12
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6LL(@|)7)_Z”:( X; j_ n((a6?+])e—a6’ _(b6?+])e—b9) 13
o Sa+px;) (B+ab+poa)e ™ —(B+ab+ pObe™’
ALLOF) o o 20
00 9’ ((,B+m9+,80a)e fratpb) ) (+a0+paa)e=® —(p+a6+pab)e™’)
s puke (e e —al a0 + pe a0 s prk )| o (14)
((ﬂ+a6’ + pba)e ™% —(B+ a0+ pob)e ™Y )2 =N

Sine equation (12), (13) and (14) are nonlinear algebraic equation and are not in closed-form expression,

the parameters «, f and @are answered using Newton-Raphson method.

4. Applications

The baseline distribution and the proposed distribution are applied for 4 lifetime datasets. The
performance of the TLD and the TTLD are considered using —/og (L), Akaike’s information criterion (AIC)
and Kolmogorov-Smirnov test (K-S test) as equation (15) and (16).

AIC =-2log(L)+2p , (15)

K =8 =sup|F,(x)- Fy(x), (16)

where F,(x) is the empirical cumulative probability, Fy(x) is the theoretical cumulative distribution function
evaluated at x, »n is a number of samples and p is a number of parameters. An appropriate distribution will
provide the lowest values of —log (L) and AIC. Moreover, the model gives a large p-values for K-S test
(>0.05), the model corresponds the real dataset. The details of the 4 lifetime datasets with descriptive

statistics are as:

Dataset 1: The number of cycles to failure for 25 100-cm specimens of yarn, tested at a particular strain
level [11]
15 20 38 42 61 76 86 98 121 146 149 157 175
176 180 180 198 220 224 251 264 282 321 325 653

Dataset 2: The number of million revolutions before failure for each of the 23 deep groove ball bearings in

the life tests [11].

17.88 28.92 33.00 4152 42,12 4560 48.80 51.84 5196 54.12 5556 67.80
68.44 68.64 68.88 84.12 93.12 9864 105.12 105.84 127.92 128.04 173.40
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Dataset 3: The strength values of 63 pieces of 1.5 cm glass fibers measured at the National Physical
Laboratory, England. Unfortunately, the units of measurements are not given in the paper, and they are
taken from Smith & Naylor [12].
0.55 093 125 136 149 152 158 161 164 168 173 1.81 2.00
0.74 104 127 139 149 153 159 161 166 168 1.76 182 2.0l
0.77 111 128 142 150 154 160 1.62 166 169 176 1.84 224
081 1.13 129 148 150 155 161 1.62 166 170 177 184 0.84
124 130 148 151 155 161 1.63 167 170 178 1.89

Dataset 4: The strength (mega Pascal) values of 31 pieces of glass of the aircraft window [13].

18.83 20.8 21.657 23.03 2323 24.05 24321 255 2552 258 2669 26.77 26.78
27.05 27.67 299 31.11 332 3373 3376 33.89 3476 35.75 3591 36.98 37.08
37.09 39.58 44.045 4529 45381

The descriptive statistics of the 4 datasets are shown in Table 1. Based on the results of tablel,
there is a rather high variation for dataset 1 and 2 and a low variation for dataset 3 and 4 the skewness
coefficient (S.C.) of the dataset 1 and 2 are greater than +1 that mean the both datasets are highly positive
skewed distribution [14]. The kurtosis coefficients of the dataset are between -0.622 to 5.662.

Table 1 Mean, standard deviation (S.D.), skewness coefficient (S.C.) and kurtosis coefficient (K.C.) of the

4 datasets
Dataset Mean S.D. S.C. K.C.
1 178.3200 133.8008 1.842 5.662
2 72.2296 37.4804 1.009 0.929
3 1.5068 0.3241 -0.922 1.103
4 30.8114 7.2534 0.426 -0.622

The numerical experiments are shown in Table 2. It reveals —log (L), AIC and K-S test of TLD and
TTLD for 4 lifetime datasets. TTLD is a consistently better fit than TLD because most of the datasets have
the lower —log (L) and AIC. In addition, the TTLD gives a larger p-value (p-value > 0.05) for K-S test
except dataset 3. Both TLD and TTLD do not fit for dataset 3 because they provide a small p-value (p-value
< 0.05) for the K-S test. It is possible that dataset 3, a very small standard deviation and negatively skewed
distribution, is suitable for the other distributions. For dataset 4, the TTLD corresponds the dataset, but
TLD does not correspond the dataset because the TTLD has a large p-value (p-value = 0.7467) for the K-S
test while TLD has a small p-value (p-value < 0.05) for the K-S test.
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Table 2 Parameter estimation and statistic values of TLD and TTLD based on lifetime datasets

Par‘ame‘ter Par‘ame‘ter —log(L) —log(L) AIC AIC K-S (p—lj;lsue)
Dataset | Parameter Estimation Estimation TLD TTLD TLD TTLD (p-value) TTLD
TLD TTLD TLD
1 0 0.0109 0.01096 | 152.5336 | 152.0522 | 311.0672 | 314.1044 | 0.1135 0.1126
o 1.43x10* | 1.71x10* (0.8688) | (0.8742)
B 4.28x10* | 5.12x10*
a - 15
b - 653
2 0 0.0274399 | 0.0250 115.6319 | 112.2088 | 237.2638 | 234.4176 | 0.1899 0.1274
o 0.0000041 | 0.0003 (0.3348) | (0.8041)
B 0.0000081 0.0001
a - 17.88
b - 173.40
3 4] 1.3663 0.1497 64.6158 | 30.0305 | 135.2316 | 70.0610 0.3785 0.2442
o 6.36x106 0.0001 (1.6x10%) (8.6x10%)
B 1.56x10* | 0.0005
a - 0.55
b - 2.24
4 0 0.06154 0.05352 | 127.6618 | 101.0968 | 261.3237 | 212.1937 | 0.3702 0.1169
a 0.00037 | 0.00014 (<0.01) | (0.7467)
B 0.00020 | 0.000075
a - 18.83
b - 45.3810

5. Conclusion

In this study, the three-parameter Lindley distribution is developed by truncating from both left and
right sides. The truncated three- parameter Lindley distribution is presented with its statistical properties
such as a probability density function, cumulative distribution function, survival function, hazard function,
moments and parameter estimation. In addition, the improved distribution is applied for 4 real lifetime
datasets. The model performances are compared using the negative log-likelihood —log (L), the Akaike
information criterion (AIC) and the Kolmogorov-Smirnov test (K-S test). The results reveal that the
developed distribution provides the model which is a better fit than the baseline distribution because most
of the datasets has a smaller —log (L) and AIC. In addition, the proposed distribution gives a large p-values
for K-S test.
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