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Abstract

The purpose of this study is to compare the efficiency of three methods; Trapezoidal rule
method, Gauss-Nystrom method, and Hermite series Method for the solution of Linear Fredholm
Integral Equation of the Second Kind. The numerical methods are involved in partition of grids and
weight function for apporoximation of solutions and simplified to be a system of linear equation. The
numerical solutions are illustrated and compared by Absolute Error measurement as errror analysis.
Also, one example is discussed and solved by three methods and the results are compared. The
findings showed that Gauss-Nystrom method was more efficient than Trapezoidal rule and Hermite

series method, which was based on minimum absolute error.

Keywords: Linear Fredholm Integral Equation, Trapezoidal rule, Gauss-Nystrom, Hermite Series,

Absolute Error

1. Introduction

Integral equation is an equation formed as unknown function which is a part of the integrand under
the integral sign. The remained another part of the integrand is often called the kernel function, two variable
functions. Actually, integral equation is derived from differential equation described for natural phenomena
such as radioactive energy transfer, oscillation of a string, and forecasting in human population [1-4]. In
recent year, some problems and models occurred in several fields especially science and engineering have

related to linear Fredholm integral equation of the second kind (LFIESK) [5] which is formed
b
f(x)=u(x)+ j K (x, t)u(t)dt @)

where K (X,t) is kernel function, f (x) is given function, and u(x) is the unknown function.

Generally, LFIESK cannot solve for the analytical solution. Most researchers have succeeded in the

numerical solution. This requires the most accuracy and efficient for approximated methods. Therefore,
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there are several researchers have proposed various methods for solving LFIESK. Doucet et al. [6] solved
the integral equation using Markov Chain Monte Carlo and applied the method for solving the rational
expectation pricing model. Latter, Yalcinbas and Aynigul [4] proposed the series solution of linear
Fredholm integral equations based on Hermite polynomials. In 2014, the numerical method for solving
Fredholm integral equations by the four Chebyshev polynomials was offered by Nadir [3]. Moreover,
Zhang et al. [1] presented a novel method based on Radial Basis function, Meshless method, for solving the
linear integral equations. Although there are several methods showed above, the differences amongst these
computation methods are also discussed. The four Chebyshev polynomials [3] for solving integral equation

needs transform domain of integration into [—1,1] but the second member of the four Chebyshev

polynomials satisfied only for some conditions. Using Markov Chain Monte Carlo Methods [6] for solving
integral equation spends a lot of time because the methods are random processes operated under
probability. Besides, Meshless method is suitable for solving high dimensional integral equations. That is
to say, Meshless method [1] will be efficient with the solution of multi-dimensional integral equations.
Also, Hermite series method [4] is the easy method for solution of integral equations with low computation
and high accuracy, but it does not exist under the expansion in Hermite series in —1< X,t <1of function
f(x) and K(x,t) which is undefined. Furthermore, two of the efficient methods are Trapezoidal rule
method and Gauss-Nystrom method used in general condition of integral equations. However, this paper

consider in the comparison of accuracy that is the minimum of absolute error (AE) amongst Trapezoidal

rule method, Gauss-Nystrom method, and Hermite series method. Computational example is also provided.

2. Numerical method for solving LFIESK
In this section, three numerical methods for the approximation solution of LFIESK as shown in
equation (1); Trapezoidal rule method, Gauss-Nystrom method, and Hermite series method, are presented.

Also, the formula of the accuracy, AE, is introduced.

2.1 Trapezoidal rule method
Trapezoidal rule method [5] for integration is one of the methods for solving LFIESK. In other
words, the area under the curve can be estimated by Trapezoidal rule. This method bases on construction of
. - ) . . . b—a
n grids divided from the interval [a,b] into sub-grids with equal length, h where h=——,
n

t;=a+jh, j=012..,N.

b
Term of the integration _[K(x,t)u(t)dt in LFIESK (equation (1)) will be approximated by the
a

Trapezoidal rule as formed
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b N-1
J.K(x,t)u(t)dt :g[K(x,to)u(tO) + K (X, ty)u(ty )]+ hz K(x,t;)u(t;) . )
a j=1

Substitute equation (2) into equation (1) to acquire

f(x) =u(x) +2[K(x,t0)u(to) + K(x,ty )u(ty )]+ hf K(xt;)u(t;) . (3)

In order to construct the system of linear equation from equation (3), replacing t;s to X is assigned. The

system of linear equation is as follows
h N-1
f(t)=u() +E[K(ti tou(ty) + K, ty u(ty )]+ hz K(t,t;)u(t;) . 4
j=1

Let f(t)=f, K(t,t;)=Kj;, and u(t;) =u;. The rearranged equation (4) becomes the system of linear

ij’

equation

N-1
fi :ui+g[KiOu0+KiNuN]+hz Kju; ()

j=1
Matrix represented by system of N +1 linear equations with N +1unknown variables can be formed
(I+KW)u=f (6)

where f =[f], u :[ui]T, K =[kij], and W :diag(g,h,...,h,g).
Equation (6) can be solved easily by the classical approaches in numerical method such as Gaussian

elimination method, LU decomposition method, and iterative methods.

2.2 Gauss-Nystrom method

Gauss-Nystrom method [5] bases on choosing the appropriate nodal abscissas and weights for
integration to approximate the approximation solution of LFIESK (equation (1)). For this paper, Gauss-
Lengedre quadrature is chosen as the nodal abscissas and weights based on Lengedre function for

integration. Therefore, not only is determination of nodal abscissas (X;) the zeros of the Lengedre

13



[

R. Sunthornwat / 15a13533M3Unuiu U 5 adiun 12 unsiau - ew 2558

polynomial that is the orthogonal polynomial with respect to the weight w(x) =1 over domain [-1,1], but
also weights (W,) of each nodal abscissas are based on derivatives of the Lengedre polynomial. Nodal

abscissas and its weights [2] are as follows:

= cos 20 =0-25) %
n+0.5
W 2 ®)

=X Py ()T

where p,(X) = %W[(l_ x*)"] or Lengedre polynomial

N is an order of Lengedre polynomial.

However, in approximation of the solution of LFIESK (equation (1)) by using this method, the

domain of integration can be transformed from [a,b] into [-1,1] by linear transformation,
b-a
t:a+T(z+1), -1<z<1. )
Then, LFIESK (equation (1)) becomes

f(x)=u(x)+ lIk(x, z)u(z)dz (10)

where k(x, 2) ='O_Ta K(x,2).

Similar process with Trapezoidal rule method can be applied to form the system of N linear

equations with N unknown variables in matrix form
(I+kKu=f. (11)

Equation (11) can be solved by matrix algebra to find unknown variables U, which is the approximation

solution U(x) of LFIESK.
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2.3 Hermite series method

Hermite series method [4] base on an orthogonal continuous polynomials which are called Hermite
polyonomials on [—oo,0] with respect to the weight function, w(X) =e . Let H,(x) be the Hermite
polynomial of n degrees where H_(x) =2xH, ,(X)-2(n-1)H, ,(x) with H,(x) =1, H,(X) =2Xx. The
approximation solution of LFIESK equation (1) U(x), the function f(x), and kernel function K(x,t) are

assumed as linear combination of Hermite polynomials, Hermite series. Thus,

u(x) :ZN:ciHi(x), 12)
£ (x) =i fH.(x) (13)
and K (x.t) = ZN:zN: K, ;H; 0OH, (1) (14)

where H, =[H,(xX)H,(x)...H (X)]
C=[c,c,..cy] .

After that, equation (12-14) is substituted into equation (1) with simplification to matrix form as

f:C+K{jHITtht}C or f=(1+KQ)C (15)
-1

1
where Q ={thT H.dty=[g;1;i,j=01...,N
-1

f=[f, f..f,T

H, =[H, (t) H,(t)...H , )]
H, =[Hy(t) Hy(t)... Hy (V)]
kOO k01 kON
klo kll klN
kNO kNl kNN
[K(x,t)] = H KH] .
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If (I +KQ) in equation (15) is invertible, then the approximated solution U(x) of equation (1) is

existent and C = (1 + KQ)™ f . Continuously, the approximated solution Gi(X) of equation (1) is computed

in term of linear combination of unknown coefficients C and Hermite polynomials.

3. Accuracy of solution
In the research, the accuracy to desire of minimum error, absolute error is typically applied.
Absolute error is an applied measurement of error, which is the absolute of difference between

approximated solution u(X) and exact solution u(x) , defined as
AE(x) =[d(x)-u(x)]. (16)

4. Computational results
In this section, the numerical results, which obtain from one of the examples from Yalcinbas and

Aynigul [4], were illustrated. Let us now solve the linear Fredholm integral equation with second kind [4],

1
e —x=u(x)- J'xe‘Ztu(t)dt (17)

with exact solution u(x) = e

The exact solution and approximated solution from are illustrated in Table 1, the error analysis is

given in Figure 1, and the comparison of solutions is also shown in Figure 2.

Table 1 Exact and approximated solutions of equation (17)

Numerical Method for solving LFIESK

Trapezoidal rule Hermite series method Gauss-Nystrom
Exact solution
i X method [4] method
i U(XI) — eZXi
for N =10 for N =10 for N=4
G0¢) | AE(x) | d(x) AE(X) G(x%) AE(X)
0 1 1 0 1 0 1 0

0.1 | 1.221402758 1.22140 | 2.758E-06 | 1.22140 | 2.758E-06 1.22140 2.758E-06
0.2 | 1.491824698 1.49183 | 5.302E-06 | 1.49183 | 5.302E-06 1.49183 5.302E-06
0.3 | 1.8221188 1.82212 | 1.2E-06 1.82212 | 1.2E-06 1.82212 1.2E-06
0.4 | 2.225540928 2.22554 | 9.28E-07 2.22555 | 9.072E-06 2.22554 9.28E-07
0.5 | 2.718281828 2.71828 | 1.828E-06 | 2.71829 | 8.172E-06 2.71828 1.828E-06
0.6 | 3.320116923 3.32012 | 3.077E-06 | 3.32013 | 1.3077E-05 | 3.32012 3.077E-06

| O B~ W N P O
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Numerical Method for solving LFIESK

Trapezoidal rule Hermite series method Gauss-Nystrom
Exact solution
i X; method [4] method
"] k) =e”
for N =10 for N =10 for N=4

G(x) | AE(x) | d(%) | AE(x) (%) | AE(x)

7 0.7 | 4.055199967 | 4.05520 | 3.3E-08 4.05521 | 1.0033E-05 | 4.05520 3.3E-08

8 0.8 | 4953032424 | 495303 | 2.424E-06 | 4.95304 | 7.576E-06 4.95303 2.424E-06
9 0.9 | 6.049647464 | 6.04965 | 2.536E-06 | 6.04965 | 2.536E-06 6.04965 2.536E-06
10 | 1.0 | 7.389056099 | 7.38906 | 3.901E-06 | 7.38902 | 3.6099E-05 | 7.38906 3.901E-06

Figure 1 gives information about comparison of the absolute error on domain [0,1] of LFIESK

(equation (17)) between Hermite series method and Trapezoidal rule method. Figure 2 shows the solutions
obtained from Trapezoidal rule method, Hermite series method, and Gauss-Nystrom method and exact
solution of LFIESK (equation (17)). On the whole, estimated solution can be best fit by Gauss-Nystrom
method among these methods which solve LFIESK (equation (17)).

% 10°° Comparison AE between Trapezoidal and Hermite for N=10
4 1 1 1 1 1 I 1 1 1
—4— AE-Trap

35 —FH—AE-Herm 1

Absolute Error

0 1 }
] 0.1 0.2 0.3 0.4 0.5 06 0.7 0.8 0.9 1
I

Figure 1 The absolute errors of exact solution between Trapezoidal and Hermite for N =10.
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Comparison of the solution of LFIESK
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Figure 2 The solutions of LFIESK (equation (17)).

5. Discussion and Conclusion

In this paper, three methods for the solution of LFIESK equation were demonstrated and compared.
In order to find the efficient method, the absolute error measurement was applied. Table 1 and Figure 1
illustrate the absolute errors of the solutions of LFIESK (equation (17)). Overall, the absolute error from

Hermite series method is higher than Trapezoidal rule method over domain [0,1] for N =10 which

provides the minimum absolute error amongst the comparisons for N =7 —10[4]. As a result, Trapezoidal
rule method is the best of both methods by absolute error measurement. After that, the Trapezoidal rule
method was compared with Gauss-Nystrom method. As shown in Table 1, the approximated solutions
from Trapezoidal rule method and Gauss-Nystrom method are equal, but the number of N is not equal.
That is, Gauss-Nystrom method is successfully computed just N = 4 for the equal approximated solutions,
while Trapezoidal rule method is computed the equal approximated solution for N =10. Consequently,
amongst three methods; namely, Trapezoidal method, Gauss-Nystrom method, and Hermite series method,
Gauss-Nystrom method is the best efficient method for the solution of LFIESK (equation (17)) as shown in

Figure 2. As discussed previously, Gauss-Nystrom method is a very flexible and potential method, but it is
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still based on weight function and has also certain limitations. This alternative is to conduct research in the

future works and to focus on novel developments.
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