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Abstract

The purpose of this study is to compare the efficiency of three methods; Trapezoidal rule 

method, Gauss-Nystrom method, and Hermite series Method for the solution of Linear Fredholm 

Integral Equation of the Second Kind. The numerical methods are involved in partition of grids and 

weight function for apporoximation of solutions and simplified to be a system of linear equation. The 

numerical solutions are illustrated and compared by Absolute Error measurement as errror analysis. 

Also,  one example is discussed and solved by three methods and the results are compared. The 

findings showed that Gauss-Nystrom method was more efficient than Trapezoidal rule and Hermite 

series method, which was based on minimum absolute error. 
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1.  Introduction

 Integral equation is an equation formed as unknown function which is a part of the integrand under 

the integral sign. The remained another part of the integrand is often called the kernel function, two variable 

functions. Actually, integral equation is derived from differential equation described for natural phenomena 

such as radioactive energy transfer, oscillation of a string, and forecasting in human population [1-4]. In 

recent year, some problems and models occurred in several fields especially science and engineering have 

related to linear Fredholm integral equation of the second kind (LFIESK) [5] which is formed 

( ) ( ) ( , ) ( )
b

a

f x u x K x t u t dt (1)

where ( , )K x t  is kernel function, ( )f x  is given function, and ( )u x  is the unknown function. 

Generally, LFIESK cannot solve for the analytical solution. Most researchers have succeeded in the 

numerical solution. This requires the most accuracy and efficient for approximated methods. Therefore, 
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there are several researchers have proposed various methods for solving LFIESK. Doucet et al. [6] solved 

the integral equation using Markov Chain Monte Carlo and applied the method for solving the rational 

expectation pricing model. Latter, Yalcinbas and Aynigul [4] proposed the series solution of linear 

Fredholm integral equations based on Hermite polynomials. In 2014, the numerical method for solving 

Fredholm integral equations by the four Chebyshev polynomials was offered by Nadir [3]. Moreover, 

Zhang et al. [1] presented a novel method based on Radial Basis function, Meshless method, for solving the 

linear integral equations. Although there are several methods showed above, the differences amongst these 

computation methods are also discussed. The four Chebyshev polynomials [3] for solving integral equation 

needs transform domain of integration  into [ 1,1]  but the second member of the four Chebyshev 

polynomials satisfied only for some conditions. Using Markov Chain Monte Carlo Methods [6] for solving 

integral equation spends a lot of time because the methods are random processes operated under 

probability.  Besides, Meshless method is suitable for solving high dimensional integral equations. That is 

to say, Meshless method [1] will be efficient with the solution of multi-dimensional integral equations. 

Also, Hermite series method [4] is the easy method for solution of integral equations with low computation 

and high accuracy, but it does not exist under the expansion in Hermite series in 1 , 1x t of function 

( )f x  and ( , )K x t  which is undefined. Furthermore, two of the efficient methods are Trapezoidal rule 

method and Gauss-Nystrom method used in general condition of integral equations. However, this paper 

consider in the comparison of accuracy that is the minimum of absolute error (AE) amongst Trapezoidal 

rule method, Gauss-Nystrom method, and Hermite series method. Computational example is also provided. 

2.  Numerical method for solving LFIESK 

 In this section, three numerical methods for the approximation solution of LFIESK as shown in 

equation (1); Trapezoidal rule method, Gauss-Nystrom method, and Hermite series method, are presented. 

Also, the formula of the accuracy, AE, is introduced. 

2.1  Trapezoidal rule method 

 Trapezoidal rule method [5] for integration is one of the methods for solving LFIESK.  In other 

words, the area under the curve can be estimated by Trapezoidal rule. This method bases on construction of 

n  grids divided from the interval [ , ]a b  into sub-grids with equal length, h  where ,b a
h

n

, 0,1,2,...,jt a jh j N .

Term of the integration ( , ) ( )
b

a

K x t u t dt  in LFIESK (equation (1)) will be approximated by the 

Trapezoidal rule as formed 
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1

0 0
1

( , ) ( ) [ ( , ) ( ) ( , ) ( )] ( , ) ( )
2

b N

N N j j
ja

h
K x t u t dt K x t u t K x t u t h K x t u t . (2)

Substitute equation (2) into equation (1) to acquire 

1

0 0
1

( ) ( ) [ ( , ) ( ) ( , ) ( )] ( , ) ( )
2

N

N N j j
j

h
f x u x K x t u t K x t u t h K x t u t .    (3) 

In order to construct the system of linear equation from equation (3), replacing ,
it s to x  is assigned. The 

system of linear equation is as follows 

1

0 0
1

( ) ( ) [ ( , ) ( ) ( , ) ( )] ( , ) ( )
2

N

i i i i N N i j j
j

h
f t u t K t t u t K t t u t h K t t u t .   (4) 

Let ( ) , ( , ) ,i i i j ijf t f K t t K  and ( )i iu t u . The rearranged equation (4) becomes the system of linear 

equation 

1

0 0
1

[ ]
2

N

i i i iN N ij j
j

h
f u K u K u h K u       (5) 

Matrix represented by system of 1N  linear equations with 1N unknown variables can be formed 

( )I KW u f          (6) 

where [ ], [ ] , [ ],T
i i ijf f u u K k and ( , ,..., , )

2 2
h h

W diag h h .

Equation (6) can be solved easily by the classical approaches in numerical method such as Gaussian 

elimination method, LU decomposition method, and iterative methods. 

2.2  Gauss-Nystrom method 

Gauss-Nystrom method [5] bases on choosing the appropriate nodal abscissas and weights for 

integration to approximate the approximation solution of LFIESK (equation (1)). For this paper, Gauss-

Lengedre quadrature is chosen as the nodal abscissas and weights based on Lengedre function for 

integration. Therefore, not only is determination of nodal abscissas ( ix ) the zeros of the Lengedre 
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polynomial that is the orthogonal polynomial with respect to the weight ( ) 1w x  over domain [ 1,1] , but 

also weights ( iW ) of each nodal abscissas are based on  derivatives  of  the Lengedre polynomial. Nodal 

abscissas and its weights [2] are as follows: 

( 0.25)cos
0.5i

i
x

n
         (7) 

2 2

2

(1 )[ ( )]
i

i n i

W
d

x p x
dx

        (8) 

where 2( 1)( ) [(1 ) ]
2 !

n n
n

n n n

d
p x x

n dx
 or Lengedre polynomial 

n  is an order of Lengedre polynomial. 

However, in approximation of the solution of LFIESK (equation (1)) by using this method, the 

domain of integration can be transformed from [ , ]a b  into [ 1,1] by linear transformation, 

( 1), 1 1
2

b a
t a z z  .       (9) 

Then, LFIESK (equation (1)) becomes 

1

1

( ) ( ) ( , ) ( )f x u x k x z u z dz         (10) 

where ( , ) ( , )
2

b a
k x z K x z .

Similar process with Trapezoidal rule method can be applied to form the system of N  linear 

equations with N unknown variables in matrix form 

( )I k u f .          (11) 

Equation (11) can be solved by matrix algebra to find unknown variables iu  which is the approximation 

solution ˆ( )u x of LFIESK. 
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2.3  Hermite  series method 

 Hermite series method [4] base on an orthogonal continuous polynomials which are called Hermite 

polyonomials on [ , ]  with respect to the weight function, 
2

( ) xw x e . Let  ( )nH x  be the Hermite 

polynomial of n  degrees where 1 2( ) 2 ( ) 2( 1) ( )n n nH x xH x n H x  with 0 1( ) 1, ( ) 2H x H x x . The 

approximation solution of LFIESK equation (1) ˆ( )u x , the function ( )f x , and kernel function ( , )K x t  are 

assumed as linear combination of Hermite polynomials, Hermite series.  Thus, 

1
( ) ( )

N

i i
i

u x c H x ,         (12) 

1
( ) ( )

N

i i
i

f x f H x          (13) 

and ,
0 0

( , ) ( ) ( )
N N

i j i j
i j

K x t K H x H t        (14) 

where   0 1[ ( ) ( )... ( )]x NH H x H x H x

0 1[ ... ]T
NC c c c .

After that, equation (12-14) is substituted into equation (1) with simplification to matrix form as 

1

1

{ }T
t tf C K H H dt C or ( )f I KQ C       (15) 

where 
1

1

{ } [ ]; , 0,1,...,T
t t ijQ H H dt q i j N

0 1[ ... ]T
Nf f f f

0 1[ ( ) ( )... ( )]t NH H t H t H t

0 1[ ( ) ( )... ( )]t NH H t H t H t

00 01 0

10 11 1

0 1

N

N

N N NN

k k k

k k k
K

k k k

[ ( , )] T
x tK x t H KH .
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If ( )I KQ  in equation (15) is invertible, then the approximated solution ˆ( )u x of equation (1) is 

existent and 1( )C I KQ f . Continuously, the approximated solution ˆ( )u x of equation (1) is computed 

in term of linear combination of unknown coefficients C and Hermite polynomials. 

3.  Accuracy of solution

In the research, the accuracy to desire of minimum error, absolute error is typically applied. 

Absolute error is an applied measurement of error, which is the absolute of difference between 

approximated solution ˆ( )u x  and exact solution ( )u x , defined as 

ˆ( ) | ( ) ( ) |AE x u x u x .         (16) 

4.  Computational results 

In this section, the numerical results, which obtain from one of the examples from Yalcinbas and 

Aynigul [4], were illustrated. Let us now solve the linear Fredholm integral equation with second kind [4], 
1

2 2

0

( ) ( )x te x u x xe u t dt         (17) 

with exact solution 2( ) xu x e .

The exact solution and approximated solution from are illustrated in Table 1, the error analysis is 

given in Figure 1, and the comparison of solutions is also shown in Figure 2. 

Table 1 Exact and approximated solutions of equation (17) 

i ix
Exact solution 

2( ) ix
iu x e

Numerical Method for solving LFIESK 

Trapezoidal rule 

method

for 10N

Hermite  series method 

[4] 

for 10N

Gauss-Nystrom 

method

for 4N

ˆ( )iu x ( )iAE x ˆ( )iu x ( )iAE x ˆ( )iu x ( )iAE x

0 0 1 1 0 1 0 1 0 

1 0.1 1.221402758 1.22140 2.758E-06 1.22140 2.758E-06 1.22140 2.758E-06 

2 0.2 1.491824698 1.49183 5.302E-06 1.49183 5.302E-06 1.49183 5.302E-06 

3 0.3 1.8221188 1.82212 1.2E-06 1.82212 1.2E-06 1.82212 1.2E-06 

4 0.4 2.225540928 2.22554 9.28E-07 2.22555 9.072E-06 2.22554 9.28E-07 

5 0.5 2.718281828 2.71828 1.828E-06 2.71829 8.172E-06 2.71828 1.828E-06 

6 0.6 3.320116923 3.32012 3.077E-06 3.32013 1.3077E-05 3.32012 3.077E-06 
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i ix
Exact solution 

2( ) ix
iu x e

Numerical Method for solving LFIESK 

Trapezoidal rule 

method

for 10N

Hermite  series method 

[4] 

for 10N

Gauss-Nystrom 

method

for 4N

ˆ( )iu x ( )iAE x ˆ( )iu x ( )iAE x ˆ( )iu x ( )iAE x

7 0.7 4.055199967 4.05520 3.3E-08 4.05521 1.0033E-05 4.05520 3.3E-08 

8 0.8 4.953032424 4.95303 2.424E-06 4.95304 7.576E-06 4.95303 2.424E-06 

9 0.9 6.049647464 6.04965 2.536E-06 6.04965 2.536E-06 6.04965 2.536E-06 

10 1.0 7.389056099 7.38906 3.901E-06 7.38902 3.6099E-05 7.38906 3.901E-06 

 Figure 1 gives information about comparison of the absolute error on domain [0,1]  of LFIESK 

(equation (17)) between Hermite series method and Trapezoidal rule method.  Figure 2 shows the solutions 

obtained from Trapezoidal rule method, Hermite series method, and Gauss-Nystrom method and exact 

solution of LFIESK (equation (17)).  On the whole, estimated solution can be best fit by Gauss-Nystrom 

method among these methods which solve LFIESK (equation (17)). 

Figure 1  The absolute errors of  exact solution between Trapezoidal and Hermite  for  10N .



Figure 2  The solutions of LFIESK (equation (17)). 

5.  Discussion and Conclusion 

 In this paper, three methods for the solution of LFIESK equation were demonstrated and compared. 

In order to find the efficient method, the absolute error measurement was applied. Table 1 and Figure 1 

illustrate the absolute errors of the solutions of LFIESK (equation (17)). Overall, the absolute error from 

Hermite series method is higher than Trapezoidal rule method over domain [0,1]  for 10N  which 

provides the minimum absolute error amongst the comparisons for 7 10N [4].  As a result, Trapezoidal 

rule method is the best of both methods by absolute error measurement. After that, the Trapezoidal rule 

method was compared with Gauss-Nystrom method.  As shown in Table 1, the approximated solutions 

from Trapezoidal rule method and Gauss-Nystrom method are equal, but the number of N is not equal. 

That is, Gauss-Nystrom method is successfully computed just 4N for the equal approximated solutions, 

while Trapezoidal rule method is computed the equal approximated solution for 10N . Consequently, 

amongst three methods; namely, Trapezoidal method, Gauss-Nystrom method, and Hermite series method, 

Gauss-Nystrom method is the best efficient method for the solution of LFIESK (equation (17)) as shown in 

Figure 2. As discussed previously, Gauss-Nystrom method is a very flexible and potential method, but it is 
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still based on weight function and has also certain limitations. This alternative is to conduct research in the 

future works and to focus on novel developments. 
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