

การวิเคราะห์ประสิทธิภาพและเสถียรภาพทางไฟฟ้าเบื้องต้นในกรณีที่ใช้ MnO_2
เป็นวัสดุแคโทดสำหรับเซลล์เชื้อเพลิงแบบสังกะสี-อากาศ

Electrical Performance and Stability of Zinc Air Fuel Cell Using Cathode Material of MnO_2

ณัฐพล วงศ์เยาว์^{1*} Yuki Seki² และ Dan Takamura²

¹ ศูนย์วิจัยและวิศวกรรมเทคโนโลยีเซลล์เชื้อเพลิง และไฮโดรเจน

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี 126 ถนนประชาอุทิศ แขวงบางมด เขตทุ่งครุ กรุงเทพฯ 10140

² Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba-shi 263-8522, Japan

Nutthapon Wongyao^{1*}, Yuki Seki² and Dan Takamura²

¹Fuel Cells and Hydrogen Research and Engineering Center

King Mongkut's University of Technology Thonburi

126 Pracha-Uthit Rd., Bang Mod, Thung Khru, Bangkok 10140, Thailand.

²Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba-shi 263-8522, Japan.

Email address: w_nutthapon@hotmail.com

บทคัดย่อ

เซลล์เชื้อเพลิงแบบสังกะสี-อากาศ (Zinc-Air Fuel cell, ZAFC) เป็นเซลล์เชื้อเพลิงที่ในทางทฤษฎีสามารถให้ค่าพลังงานต่ำปริมาณได้ค่อนข้างสูง ซึ่งการนำมาประยุกต์ใช้งานต้องทำการทดสอบเสถียรภาพในการจ่ายกระแสไฟฟ้าเพื่อให้เกิดความเชื่อมั่นในการใช้งานจริง ในงานวิจัยนี้จึงได้ทำการศึกษาเสถียรภาพในการจ่ายกระแสไฟฟ้าสำหรับเซลล์เชื้อเพลิงแบบสังกะสี-อากาศ ในกรณีที่ใช้โลหะออกไซด์ คือ แมงกานีสไดออกไซด์ เป็นวัสดุแคโทด โดยทำการเปลี่ยนแปลงปริมาณแมงกานีสไดออกไซด์ (MnO_2) เพื่อศึกษาประสิทธิภาพในการเกิดปฏิกิริยา รีดักชันของออกซิเจนจากอากาศที่เข้าสู่ขั้วแคโทดโดยตรงโดยการพาแบบอิสระ จากการทดลองพบว่าเมื่อเพิ่มปริมาณของแมงกานีสไดออกไซด์ จาก 0.5 mg/cm^2 เป็น 2 mg/cm^2 ทำให้ค่ากำลังไฟฟ้าเพิ่มขึ้นประมาณ 4.8 เท่า โดยมีค่ากำลังไฟฟ้าสูงสุดที่ 45.2 mW/cm^2 ซึ่งค่าการเพิ่มขึ้นของกำลังไฟฟ้าดังกล่าวได้ทำการวิเคราะห์โดยการวัดค่าอิมพีเดนท์ของเซลล์ที่ให้ทราบว่าการเกิดปฏิกิริยา รีดักชันที่ด้านแคโทดมีค่าเพิ่มขึ้นเนื่องจากความด้านทานในการเคลื่อนที่ของประจุภายในเซลล์มีค่าลดลง นอกจากนี้ยังพบว่าในการเพิ่มปริมาณแมงกานีสไดออกไซด์ต่อพื้นที่ทำปฏิกิริยา ทำให้เสถียรภาพในการจ่ายกระแสไฟฟ้ามีค่าที่ดีขึ้นอีกด้วย

คำสำคัญ: เซลล์เชือเพลิงแบบสังกะสี-อากาศ, แมงกานีส์ไดออกไซด์, ประสิทธิภาพทางไฟฟ้า, อัมพิเดนซ์ของเซลล์, เสถียรภาพในการจ่ายกระแสไฟฟ้า

Abstract

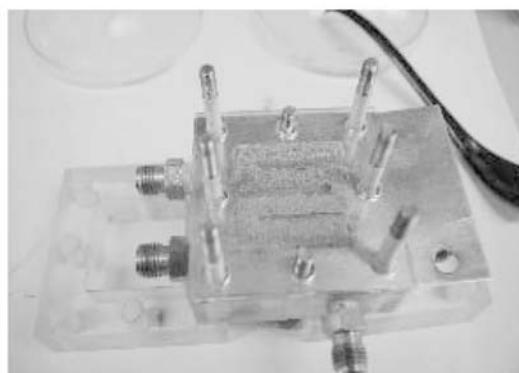
In theoretical theory, zinc air fuel cell (ZAFC) provides the high energy per volume, and then, it is suitable for small power generation unit. For ZAFC application, this can be noted that before ZAFC is employed to operate in real situation for producing electrical power, it have to be proved the stability of power generation. With this important note, the stability of cell output current was focused. In this research, the cell parameter of cathode material of manganese dioxide mixed with carbon (MnO_2/C) for the direct reaction of the oxygen reduction by using air was investigated. The results revealed that the increasing of cathode material of MnO_2 from 0.5 mg/cm^2 to 2.0 mg/cm^2 , the electrical performance of cell power density increased with 4.8 times. This increment cause of cell performance was also interpreted on the cell impedance. It was replied that the more reduction of oxygen at cathode side was performed due to the decrement of charge transfer resistance. Moreover, with high loading of MnO_2 , the cell provided more stability to produce electricity.

Keywords: Zinc-air fuel cell, manganese dioxide, electrical performance, cell impedance, current stability

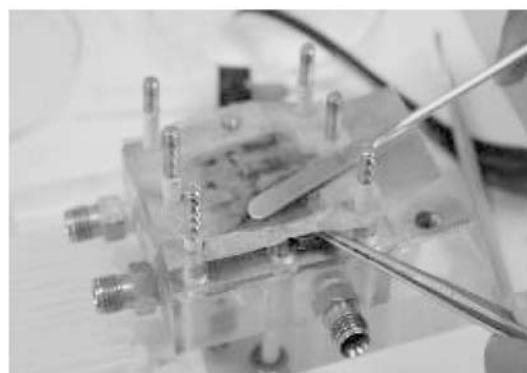
1. บทนำ

โดยทั่วไปสังกะสีจะถูกนำไปใช้งานเพื่อเป็นส่วนผสมในวัสดุอัลลอยด์ เมทัลสเปรย์ และเคลือบโลหะ เช่น สายเคเบิล หรือชิ้นส่วนของเรือเดินทะเล เพื่อป้องกันการกัดกร่อน [1-2] และสังกะสียังสามารถนำมาผ่านกระบวนการสังเคราะห์เพื่อใช้เป็นส่วนผสมของปุ๋ยสำหรับบำรุงต้นไม้และอาหารบำรุงร่างกายได้อีกด้วย [3] นอกจากนี้ยังมีการนำสังกะสีมาใช้งานด้านการผลิตพลังงาน โดยผ่านกระบวนการเคมีไฟฟ้า ซึ่งส่วนใหญ่จะอยู่ในรูปของแบตเตอรี่แบบเซลล์แห้ง [4] ซึ่งไม่สามารถนำกลับมาใช้ใหม่ และมีอายุการใช้งานสั้น

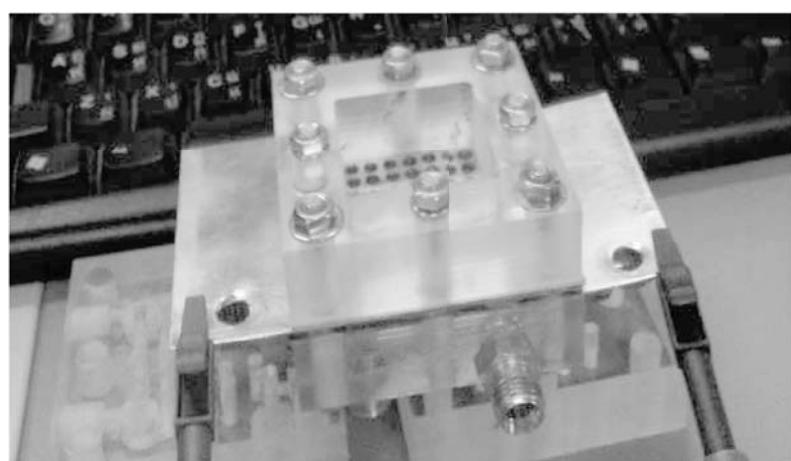
การประยุกต์ใช้งานสังกะสีในรูปแบบของเซลล์เชือเพลิงแบบสังกะสี-อากาศ เป็นอีกวิธีการหนึ่งที่สามารถใช้ผลิตพลังงานไฟฟ้าได้ โดยจุดเด่นของเซลล์เชือเพลิงแบบสังกะสี-อากาศชนิดนี้ คือ 1) ด้านพลังงาน คือ ใช้ในการผลิตกระแสไฟฟ้าในรูปแบบของเซลล์เชือเพลิงเนื่องจากการใช้สังกะสีจะให้ประสิทธิภาพสูงในการผลิตพลังงาน [5] หรือเป็นแหล่งกำเนิดพลังงานสูงสุด ถ้านำมาประยุกต์ใช้งานในรูปแบบของแบตเตอรี่ 2) ด้านวัตถุคิบ คือ สังกะสีพบมากใน


จังหวัดที่มีเขตติดต่อกับแนวภูเขาด้านตะวันตกของประเทศไทยตั้งแต่ภาคเหนือ (แม่ฮ่องสอน) ลงมาถึงภาคกลาง (กาญจนบุรี) [6] ซึ่งแหล่งสังกะสีที่พบนี้สามารถเป็นแหล่งสำรองพลังงานของประเทศไทยได้ในอนาคต และในปัจจุบันมีก่ออุตสาหกรรมรายใหญ่ได้ประกอบกิจการถุงแร่สังกะสีเพื่อประรูปใช้งานในอุตสาหกรรม เช่น บริษัท พาแคนจินครัสทารี [7] และ 3) ด้านการอนุรักษ์พลังงาน/การนำกลับเข้ามาใช้ใหม่ คือ สังกะสีที่ผ่านการใช้งานแล้วจะได้ผลิตภัณฑ์เป็นสังกะสีออกไซด์ (ZnO) ซึ่งสามารถนำไปใช้งานเป็นสารตั้งต้นในการกระบวนการอื่นต่อไป หรือสามารถนำกลับมาใช้ใหม่โดยผ่านกระบวนการอิเล็กโทร โลซิส หรือกระบวนการรีเจนเนอเรชั่น [8-9] ซึ่งสามารถเปลี่ยนสังกะสีออกไซด์ให้เป็นสังกะสีใหม่ได้ จึงเป็นการอนุรักษ์พลังงานในอีกรูปแบบหนึ่ง

สำหรับการใช้งานเซลล์เชือเพลิงแบบสังกะสี-อากาศนั้น ยังมีส่วนที่ต้องให้ความสำคัญคือการเกิดปฏิกิริยา รีดักชันที่ข้าวแคโทด เพราะการเกิดปฏิกิริยาเรดักชันของออกซิเจนมีข้อจำกัด คือ มีการเกิดปฏิกิริยาโดยรวมที่ช้า ทำให้ประสิทธิภาพในการผลิตกระแสไฟฟ้าของเซลล์เชือเพลิงมีค่าลดลง โดยทั่วไปการเกิดปฏิกิริยาเรดักชันจะใช้โลหะมีตระกูลในการเร่งการเกิดปฏิกิริยาให้ดีขึ้น เช่น แพลตทินัม (Pt) แต่เนื่องจากโลหะแพลตทินัมมีราคาสูง ในการทดลองนี้จึงได้นำแมงกานิสไดออกไซด์ (MnO_2) ที่มีราคาถูกและเป็นที่นิยมในกระบวนการสร้างข้าวอิเล็กโทรดของแบตเตอรี่ มาประยุกต์ใช้งานเป็นวัสดุแคโทดสำหรับเซลล์เชือเพลิงที่ใช้ระบบด่างหรืออัลคาไลด์ (alkaline) โดยในการทดลองนี้ทำการวิเคราะห์ประสิทธิภาพทางไฟฟ้าที่ผลิตได้โดยทำการเปลี่ยนแปลงปริมาณของแมงกานิสไดออกไซด์ต่อพื้นที่ทำปฏิกิริยาของข้าวอิเล็กโทรดที่ด้านแคโทดสำหรับเซลล์เชือเพลิงแบบสังกะสี-อากาศ และเพื่อทดสอบค่าเสถียรภาพในการจ่ายกระแสไฟฟ้าของเซลล์เชือเพลิงแบบสังกะสีอากาศ เพื่อให้เกิดความเชื่อมั่นในการนำเซลล์เชือเพลิงชนิดนี้เพื่อใช้งานจริงกับอุปกรณ์ไฟฟ้าพกพาขนาดเล็ก

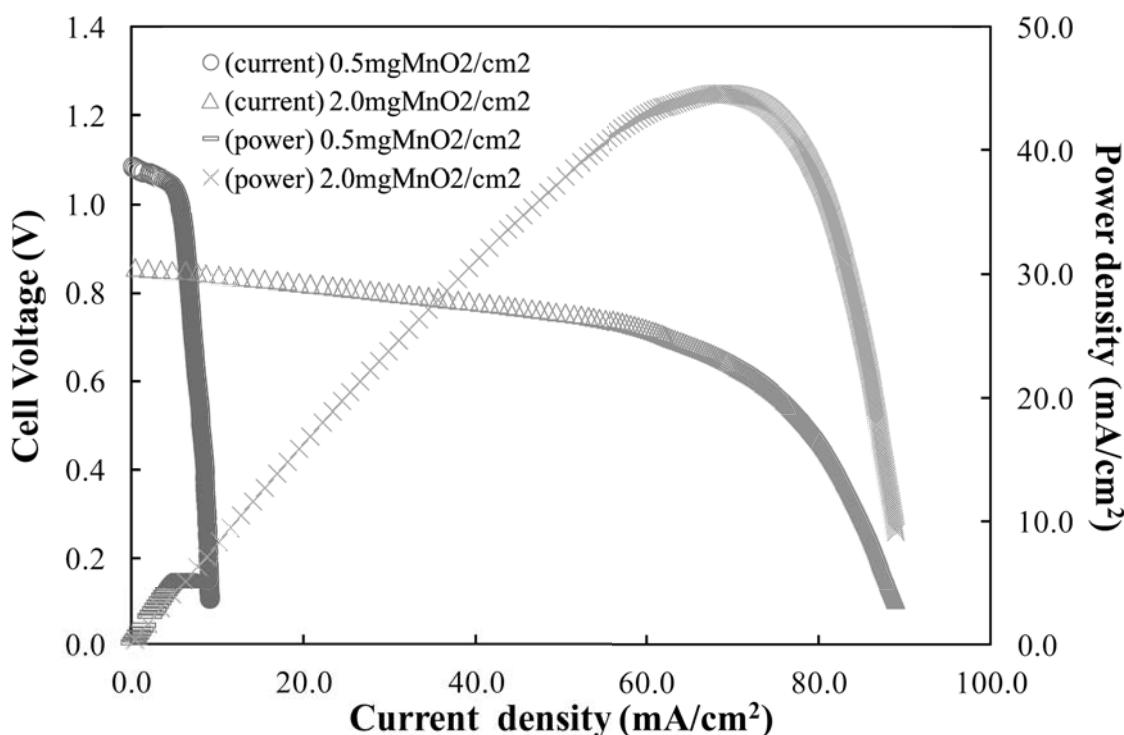

2. การทดลอง

การทดลองเพื่อการวิเคราะห์ประสิทธิภาพทางไฟฟ้าที่ผลิตได้ในกรณีที่ใช้แมงกานิสไดออกไซด์เป็นวัสดุแคโทดสำหรับเซลล์เชือแบบสังกะสี-อากาศได้ทำการเปลี่ยนแปลงปริมาณแมงกานิสไดออกไซด์ต่อพื้นที่ใช้งานของข้าวอิเล็กโทรด ($mg\ MnO_2/cm^2$) โดยทำการควบคุมอัตราส่วนระหว่างแมงกานิสไดออกไซด์กับผงคาร์บอนชนิด Vulcan ($MnO_2:C$) ให้เท่ากับ 2:1 สำหรับปริมาณแมงกานิสไดออกไซด์ต่อพื้นที่อิเล็กโทรดในการทดลองนี้มีค่าเท่ากับ 0.5 และ $2.0\ mg/cm^2$ โดยทำการทำแมงกานิสไดออกไซด์ที่ผสมกับคาร์บอนลงบนแผ่นตะแกรงนิกีลขนาด 300 mesh และที่ข้าวแอลูมิโนคลาสิกขนาดให้ใช้ผงสังกะสีบรรจุในช่องการให้โลหะแบบคดเคี้ยว (serpentine) ในปริมาณ 6 g จากนั้นใช้แผ่นกันขี้ยื่ห้อ Celgard รุ่น 5550 ซึ่งเป็นแผ่นโพลิเมอร์ที่มีรูพรุนตัวสูง (55%) ที่สามารถบรรจุสารอิเล็กโทร ไลท์ คือ KOH ความเข้มข้น 8 M เอาไว้ภายในรูพรุน เพื่อส่งถ่ายประจุ OH^- จากด้านแคโทดไปยังด้านแอลูมิโนด ในการขึ้นรูปตัวเซลล์ใช้แผ่นอะคริลิคเป็นโครงสร้างหลัก ดังแสดงการขึ้นรูปเซลล์เชือเพลิงในรูปที่ 1 การทดลองนี้ได้ทำการทดลองภายใต้สภาวะอุณหภูมิห้องที่ $25\ ^\circ C$ และทำการทดสอบประสิทธิภาพการผลิตไฟฟ้าของเซลล์เชือเพลิงแบบสังกะสี-


สามารถโดยทำการวัดค่าประสิทธิภาพทางไฟฟ้า คือ แรงดันไฟฟ้าและค่ากำลังไฟฟ้าเทียบกับค่าความหนาแน่นกระแสไฟฟ้าที่ผลิตได้ รวมถึงค่าอิมพิเดนซ์ของเซลล์เชือเพลิง ที่ทำการตรวจสอบที่ระดับแรงดันไฟฟ้าใช้งาน 0.3 V โดยใช้ค่าแอมเพลจูดเท่ากับ 10% ของระดับแรงดันไฟฟ้า จากนั้นทำการวัดช่วงความถี่ตั้งแต่ 5,500 ถึง 0.5 Hz นอกจากนี้ในการทดลองยังได้ทำการวัดค่าความเสถียรในการจ่ายกระแสไฟฟ้าที่ค่าระดับแรงดันเท่ากับ 0.3 V โดยใช้เครื่อง Potentiostat ยี่ห้อ Autolab รุ่น PGSTAT 302N

(ก)

(ข)



(ค)

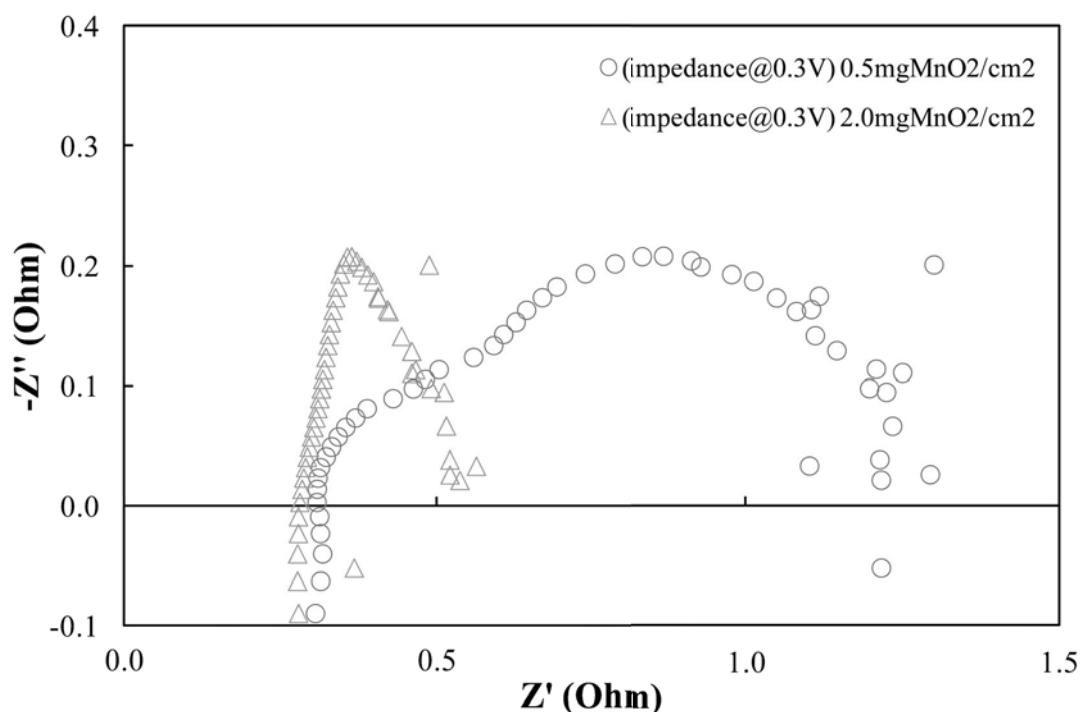
รูปที่ 1 การขึ้นรูปเซลล์เชือเพลิงแบบสังกะสีอากาศ ก) ข้อแอนโโนดซึ่งเป็นผงสังกะสีบรรจุในช่องการไหลแบบคดเคี้ยว (serpentine) ข) ข้าวแครโทดซึ่งเป็นแมงกานิสไดออกไซด์ผสมกับคาร์บอนทัลจบนแผ่นตะแกรงนำไฟฟ้านิเกล และ ค) เซลล์เชือเพลิงแบบสังกะสีอากาศที่ประกอบเสร็จแล้วโดยใช้อัลกิลเป็นโครงสร้างหลัก

3. ผลการทดลองและวิเคราะห์

จากการทดลองที่ได้พบว่า ค่าประสิทธิภาพในการผลิตไฟฟ้าของเซลล์เชือเพลิงแบบสังกะสี-อากาศให้ค่าแรงดันไฟฟ้าเปิดวงจร (Open circuit voltage, OCV) เท่ากับ 1.09 V และ 0.85 V ในกรณีที่ใช้แมงกานิสไดออกไซด์ในปริมาณ 0.5 และ 2.0 mg/cm^2 ตามลำดับ ค่าความแตกต่างของค่าแรงดันเปิดวงจรเกิดจากกระบวนการทางเทอร์โมไดนามิกส์ รวมไปถึงค่าความด้านทานในการนำประจุภายในเซลล์เชือเพลิง

รูปที่ 2 กราฟแสดงประสิทธิภาพทางไฟฟ้าในรูปแบบค่าความสัมพันธ์ของแรงดันไฟฟ้าและกำลังไฟฟ้าเทียบกับค่ากระแสไฟฟ้าต่อหน่วยพื้นที่ ในกรณีที่มีการเปลี่ยนแปลงปริมาณของแมงกานิสไดออกไซด์ที่ข้าวแคคโตก ภายใต้สภาวะอุณหภูมิห้องที่ 25°C และความดันบรรยายกาศ 1 atm

นอกจากนี้เชือเพลิงสังกะสีที่ใช้ในงานวิจัยมีความสามารถในการเกิดออกซิเดชันไดดี และในการทำปฏิกิริยาเรด็อกซ์ (redox) ในผลิตกระแสไฟฟ้าของเซลล์เชือเพลิง อาจมี OH^- มาจากข้าวแคคโตกเพิ่มมากขึ้นในกรณีที่ใช้ปริมาณแมงกานิสไดออกไซด์เท่ากับ 2.0 mg/cm^2 ซึ่งจะทำให้เกิดน้ำขึ้นภายในเซลล์ที่ด้านแอลูมิเนียม ตามปฏิกิริยา $\text{Zn} + 2\text{OH}^- \rightarrow \text{ZnO} + \text{H}_2\text{O} + 2\text{e}^-$ โดยที่นำที่เกิดขึ้นอาจเจือจากความเข้มข้นของสารละลายน้ำ KOH บนพื้นผิวทำปฏิกิริยาของสังกะสี

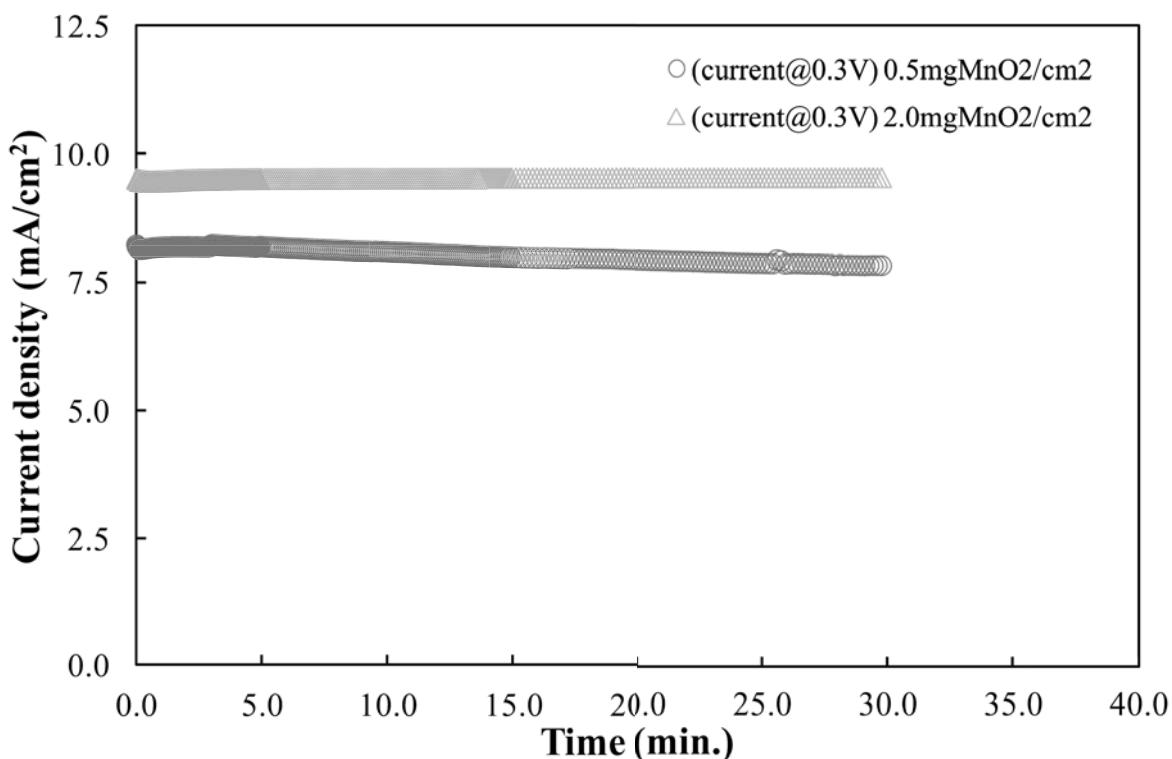

แล้วทำให้ปริมาณการเกิดปฏิกิริยาออกซิเดชันมีค่าลดลง และอาจบดบังการเคลื่อนที่ของอิเล็กตรอน ทำให้ค่าของความต่างศักย์หรือแรงดันไฟฟ้าบีโวจรมีค่าลดลง

ในส่วนของค่ากำลังไฟฟ้าสูงสุดที่ผลิตได้จากเซลล์เชื่อเพลิงแบบสังกะสี-อากาศ พบว่า การใช้ปริมาณแมงกานิสไดออกไซด์ต่อพื้นทำปฏิกิริยาที่ด้านแคโทดเพิ่มมากขึ้น ทำให้ค่ากำลังไฟฟ้าของเซลล์ที่ผลิตได้แปรผันตรงกับปริมาณแมงกานิสที่เพิ่มขึ้น โดยค่ากำลังไฟฟ้าสูงสุดที่ผลิตได้คือ 45.2 mW/cm^2 ในกรณีที่ใช้แมงกานิสไดออกไซด์ในปริมาณ 2.0 mg/cm^2 ซึ่งมีค่าสูงกว่า 4.8 mW/cm^2 เท่าในกรณีที่ใช้แมงกานิสไดออกไซด์ในปริมาณ 0.5 mg/cm^2 เนื่องจากแมงกานิสไดออกไซด์มีส่วนช่วยให้เกิดปฏิกิริยาดังต่อไปนี้ $2\text{MnO}_2 + \text{H}_2\text{O} + 2\text{e}^- \rightarrow \text{Mn}_2\text{O}_3 + 2\text{OH}^-$ เพิ่มมากขึ้น ทำให้ได้ปริมาณ OH^- เพิ่มขึ้นจากปฏิกิริยาดักชันของออกซิเจน ตามสมการ $\text{O}_2 + 2\text{H}_2\text{O} + 4\text{e}^- \rightarrow 4\text{OH}^-$ นอกจากนี้ปริมาณ OH^- ที่เพิ่มขึ้นทำให้การส่งถ่ายอิออนลบเป็นไปได้โดยง่าย โดยอาศัยความแตกต่างของความเข้มข้นระหว่างขั้วแคโทดและขั้วแอลูมิโนดอนอกจากนี้ยังเป็นการส่งเสริมให้เกิดปฏิกิริยาออกซิเดชันของสังกะสีได้ดีขึ้นที่ด้านแอลูมิโนด [10-11]

สำหรับค่าอิมพิเดนท์ของเซลล์เชื่อเพลิงแบบสังกะสี-อากาศ สามารถพิจารณาส่วนโลงครีงวงกลมของกราฟ Niquist (ดังแสดงในรูปที่ 3) ที่มีจุดตัดแกน X ในช่วงความถี่สูง ทางด้านข่ายมีของเส้นกราฟซึ่งกำหนดให้มีค่าเทียบเท่าค่าความต้านทานภายในเซลล์ (internal resistance) ซึ่งเป็นสมบัติของขั้วอิเล็กโทรดและอิเล็กโทรไลท์ รวมถึงความต้านทานที่เกิดขึ้นระหว่างรอยต่อระหว่างขั้วอิเล็กโทรดและอิเล็กโทรไลท์ และในช่วงความถี่ต่ำ หรือส่วนของโลงของกราฟ Niquist ที่ตัดแกน X ทางด้านความถี่ของเส้นกราฟ โดยกำหนดให้มีค่าเทียบเท่าค่าความต้านทานการเคลื่อนที่ของประจุ (charge transfer resistance) ในการระหว่างเกิดคู่ปฏิกิริยาออกซิเดชันและรีดักชัน [12-13] โดยค่าความต้านทานที่ได้จากจุดตัดแกน X ที่ได้ในการทดลองนี้จะเป็นผลจากข้อจำกัดในการเกิดปฏิกิริยาที่ขั้วแคโทดเป็นหลัก เนื่องจากเกิดปฏิกิริยาช้ากว่าด้านแอลูมิโนดที่ใช้สังกะสี

จากการทดสอบค่าอิมพิเดนท์ของเซลล์เชื่อเพลิงแบบสังกะสี-อากาศที่สภาวะแรงดันไฟฟ้าเท่ากับ 0.3 V พบว่า ในกรณีที่ใช้ปริมาณแมงกานิสไดออกไซด์ที่ขั้วแคโทดมีค่า 0.5 mg/cm^2 ให้ค่าความต้านทานภายในมากกว่าในกรณี 2.0 mg/cm^2 ประมาณ 6.7% และมีค่าความต้านทานการเคลื่อนที่ของประจุในการเกิดปฏิกิริยาสูงถึง 3.8 เท่า ดังแสดงค่าจุดตัดที่ช่วงความถี่สูงและความถี่ต่ำในรูปที่ 3

สำหรับค่าความต้านทานภายในของเซลล์เชื่อเพลิงที่ได้มีค่าแตกต่างกัน ไม่นานัก เนื่องจากการเตรียมเซลล์เชื่อเพลิงในการทดลองนี้ใช้ผงสังกะสีในปริมาณที่เท่ากัน ใช้แผ่นแยกรหั่นนิดเดียวกัน ใช้ความเข้มข้นของสารอิเล็กโทรไลท์เท่ากัน และใช้โครงประกอบเซลล์ชุดเดียวกัน สิ่งที่แตกต่างกันคือปริมาณวัสดุแคโทดที่ใช้งานแตกต่างกัน โดยโลหะที่ใช้เป็นสารแคโทดคือแมงกานิสไดออกไซด์ ในกรณีที่มีปริมาณโลหะเพิ่มขึ้นก็จะสามารถทำให้การส่งถ่ายอิเล็กตรอนได้ดีขึ้น ดังนั้นทำให้ความต้านทานภายในของเซลล์มีค่าลดลง [14]


รูปที่ 3 กราฟ Nyquist แสดงค่าอิมพิเดนซ์ของเซลล์เชือเพลิงแบบสังกะสี-อากาศ ที่ระดับแรงดันไฟฟ้าใช้งาน 0.3 V โดยใช้ค่าแอมเพลจูดเท่ากับ 10% ของระดับแรงดันไฟฟ้า และทำการวัดช่วงความถี่ตั้งแต่ 5,500 ถึง 0.5 Hz ภายใต้สภาวะอุณหภูมิห้อง 25°C

ในกรณีของค่าความต้านทานการเคลื่อนที่ของประจุภายในเซลล์ พบว่าปริมาณของวัสดุแคโทดหรือแมงกานีสไ/doออกไซด์ที่เพิ่มขึ้นต่อพื้นที่ทำปฏิกิริยา ส่งผลให้การเพิ่มขึ้นของการเกิดปฏิกิริยาริดกัชันที่ด้านแคโทดมีค่าเพิ่มขึ้น เนื่องจากมีค่าความต้านทานการเคลื่อนที่ของประจุลดลง ทำให้การเคลื่อนที่ของประจุในระหว่างการเกิดปฏิกิริยามีค่ามากขึ้น แต่ในกรณีที่มีการใช้ปริมาณของวัสดุแคโทดที่น้อยจะทำให้อัตราการเกิดปฏิกิริยาที่ด้านแคโทดมีค่าลดลง เนื่องจากมีค่าความต้านทานการเคลื่อนที่ของประจุที่เพิ่มขึ้น ส่งผลให้ได้ค่ากระแสไฟฟ้าลดลงเป็นอย่างมาก

สำหรับการทดสอบค่าความเสถียรในการจ่ายกระแสไฟฟ้าของเซลล์เชือเพลิงแบบสังกะสี-อากาศ ในการทดลองนี้ได้ทำการดึงกระแสไฟฟ้าภายใต้สภาวะแรงดันไฟฟ้ามีค่าเท่ากับ 0.3 V เมื่อเวลา 30 นาที จากผลการทดลองพบว่า ค่าเสถียรภาพในการจ่ายกระแสไฟฟ้าของเซลล์เชือเพลิงที่ใช้ปริมาณวัสดุแคโทด คือ แมงกานีสไ/doออกไซด์ (MnO_2) ในปริมาณ 2.0 mg/cm^2 มีค่าที่ดีกว่าในกรณีที่ใช้วัสดุแคโทดในปริมาณ 0.5 mg/cm^2 และจากการวัดค่ากระแสไฟฟ้าเป็นเวลา 30 นาที พบว่า ไม่มีการลดลงของค่ากระแสไฟฟ้าที่ผลิตได้ ซึ่งมีค่าเท่ากับ 9.5 mA/cm^2 ที่ระดับ

แรงดันไฟฟ้า 0.3 V แต่ในกรณีที่ใช้ปริมาณแมงกานีส์ไดออกไซด์มีค่าเท่ากับ 0.5 mg/cm^2 พบว่าค่ากระแสไฟฟ้าที่ผลิตได้มีค่าลดลงจาก 8.2 mA/cm^2 เป็น 7.8 mA/cm^2 เมื่อเวลาผ่านไป 30 นาที ดังแสดงในรูปที่ 4 ซึ่งสามารถคำนวณเป็นอัตราการลดลงของกระแสไฟฟ้ามีค่าเท่ากับ $0.8 \text{ mA/cm}^2 \cdot \text{hr}$

นอกจากนี้สำหรับอัตราการลดลงของค่ากระแสไฟฟ้าที่ผลิตได้ต่อเวลาที่เกิดขึ้นในการทดลองนี้ อาจเป็นไปได้ว่าอัตราในการผลิตประจุ OH^- มีค่าน้อยทำให้ไม่เพียงพอต่อการผลิตกระแสไฟฟ้า [15] ภายใต้แรงดันไฟฟ้าที่ 0.3 V เนื่องจากเซลล์เชือเพลิงที่ใช้แมงกานีส์ไดออกไซด์เป็นวัสดุแคโทดในปริมาณ 0.5 mg/cm^2 เมื่อเทียบกับปริมาณวัสดุแคโทดที่ 2.0 mg/cm^2 คิดเป็นปริมาณที่น้อยกว่าถึง 4 เท่า และเมื่อพิจารณาผลการวิเคราะห์ค่าอิมพิడเคนท์ในส่วนของค่าความต้านทานการเคลื่อนที่ของประจุ (charge transfer resistance) ในการเกิดปฏิกิริยาพบว่ามีค่าต่างกันประมาณ 3.8 เท่า ซึ่งผลการทดลองที่ได้นี้สอดคล้องและใกล้เคียงกับจำนวนเท่าของปริมาณแมงกานีส์ไดออกไซด์ที่ใช้งานต่อพื้นที่ทำปฏิกิริยา ดังนั้น เสถียรภาพในการผลิตกระแสไฟฟ้าจึงมีค่าแปรผันตรงกับปริมาณวัสดุแคโทดที่ใช้งาน

รูปที่ 4 เสถียรภาพในการจ่ายกระแสไฟฟ้าเทียบกับเวลา ที่ระดับแรงดันไฟฟ้ามีค่าเท่ากับ 0.3 V ภายใต้สภาวะอุณหภูมิห้อง 25°C

4. สรุปและข้อเสนอแนะ

เสถียรภาพในการจ่ายกระแสไฟฟ้าของเซลล์เชื่อเพลิงแบบสังกะสี-อากาศ ในกรณีที่ใช้แมงกานิสไดออกไซด์เป็นวัสดุแค็ปโตด สำหรับขั้วแค็ปโตดถูกออกแบบให้สัมผัสถกับอากาศโดยตรง และใช้สังกะสีเป็นเชื่อเพลิงในการผลิตกระแสไฟฟ้าด้านแอลูมิเนียม ขึ้นอยู่กับปริมาณของวัสดุแค็ปโตด คือ แมงกานิสไดออกไซด์ (MnO_2) ซึ่งปริมาณของแมงกานิสไดออกไซด์มีผลต่อการส่งเสริมการเกิดปฏิกิริยาติดชั้นของออกซิเจนในอากาศที่ด้านแค็ปโตดของเซลล์เชื่อเพลิงแบบสังกะสี-อากาศ โดยในการทดสอบเสถียรภาพในการจ่ายกระแสไฟฟ้าที่ระดับแรงดันไฟฟ้า 0.3 V ในกรณีที่ใช้ปริมาณแมงกานิสไดออกไซด์ต่ำพื้นที่ทำปฏิกิริยาเท่ากับ 2.0 mg/cm^2 ให้ค่าเสถียรภาพในการจ่ายกระแสไฟฟ้าที่ดีกว่า และให้ค่าประสิทธิภาพทางกำลังไฟฟ้าสูงสุดมากกว่าถึง 4.8 เท่า เมื่อเทียบกับการใช้แมงกานิสไดออกไซด์ในปริมาณ 0.5 mg/cm^2

กิจกรรมประการ

ขอบขอบพระคุณหัวหน้าศูนย์วิจัยและวิศวกรรมเทคโนโลยีเซลล์เชื้อเพลิง และไฮโดรเจน มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี ที่ได้เกื้อหนุนในการทำงานวิจัยด้านเซลล์เชื้อเพลิง

เอกสารอ้างอิง

- [1] ณปกัช พิมพ์ดี. การกัดกร่อนและการป้องกัน. Internet: <http://www.scimath.org/socialnetwork/groups/viewgroup/404-การกัดกร่อน และการป้องกัน>.
- [2] นริศ นุ่มพวง. (2555). แนวทางการป้องกันการกัดกร่อนภายในตัวเรื่อ. วารสารกรมอุทavarere (ประจำแผนกทดสอบโครงสร้าง กองความคุณคุณภาพ อุทavarere ประจำปีที่ 1).
- [3] ชาตุสังกะสี: ปั๊ยที่จำเป็นสำหรับพีช และ Zinc essential for life สังกะสีเพื่อชีวิต. Internet: <http://www.zincinfothailand.com/index.php?lay=show&ac=article&Id=539265970&Ntype=10>.
- [4] Zinc–carbon battery. Wikipedia, the free encyclopedia, Internet: http://en.wikipedia.org/wiki/Zinc%E2%80%93carbon_battery.
- [5] Kevin Bullis, (2009). Rechargeable zinc-air batteries can store three times the energy of a lithium-ion battery, Internet: <http://www.technologyreview.com/news/416020/high-energy-batteries-coming-to-market/>.
- [6] แร่สังกะสี, Internet: <http://www.mne.eng.psu.ac.th/knowledge/mine/zinc2.htm>.
- [7] อุตสาหกรรมสังกะสีของประเทศไทย, ศูนย์การเรียนรู้อุตสาหกรรมเหมืองแร่, Internet: <http://lc.dpim.go.th/kb/1096>.

- [8] E. Sayilgan, T. Kukrer, G. Civelekoglu, F. Ferella, A. Akcil, F. Veglio, M. Kitis, “A review of technologies for the recovery of metals from spent alkaline and zinc–carbon batteries,” *Hydrometallurgy*, Vol. 97, pp.158–166, 2009.
- [9] M.B.J.G. Freitas, M.K. de Pietre, “Electrochemical recycling of the zinc from spent Zn–MnO₂ batteries,” *Journal of Power Sources*, Vol. 128, pp. 343–349, 2004.
- [10] Pucheng Pei, Keliang Wang, Ze Ma, “Technologies for extending zinc–air battery’s cyclelife: A review,” *Applied Energy*, Vol. 128, pp. 315–324, 2014.
- [11] Xianyou Wang, P.J. Sebastian, Mascha A. Smit, Hongping Yang, S.A. Gamboa, “Studies on the oxygen reduction catalyst for zinc–air battery electrode,” *Journal of Power Sources*, Vol. 124, pp. 278–284, 2003.
- [12] Scribner Associates - Tutorial, *Electrochemical Impedance Spectroscopy (EIS): A Powerful and Cost-Effective Tool for Fuel Cell Diagnostics*, Internet: www.scribner.com.
- [13] Hongyun Ma, Baoguo Wang, Yongsheng Fan, Weichen Hong, “Development and Characterization of an Electrically Rechargeable Zinc-Air Battery Stack,” *Energies*, Vol. 7, pp. 6549-6557, 2014.
- [14] Baejung Kim, (2013). Non-Precious Cathode Electrocatalytic Materials for Zinc-Air Battery, Thesis presented to the University of Waterloo.
- [15] Jian Hong, Bin Fang, Chunsheng Wang, Kenneth Currie, “Intrinsic borohydride fuel cell/battery hybrid power sour,” *Journal of Power Sources*, Vol. 161, pp. 753–760, 2006.